# Zeros of Padé Error Functions for Functions with Smooth Maclaurin Coefficients

### R. K. KOVACHEVA\*

Institute of Mathematics, Bulgarian Academy of Sciences, 1090 Sofia, Bulgaria

Communicated by Doron S. Lubinsky

Received June 14, 1994; accepted in revised form November 26, 1994

We deal with functions  $f(z) := \sum_{n=0}^{\infty} a_n z^n$  whose coefficients satisfy Lubinsky's smoothness condition, namely,  $a_{j+1} \cdot a_{j-1}/a_j^2 \to \eta$  as  $j \to \infty$ ,  $\eta \neq \infty$ . In the present paper, theorems concerning the asymptotic behaviour of the normalized (in an appropriate way) Padé error functions  $(f - \pi_{n,m})$  as  $n \to \infty$ , *m*-fixed, are provided. As a consequence, results concerning the number of the zeros and of their limiting distribution are deduced.

#### 1. Introduction and Main Results

Let

$$f(z) := \sum_{j=0}^{\infty} a_j z^j \tag{1.1}$$

be a function with  $a_i \neq 0$  for all nonnegative integers j,  $(j \in \mathbb{N})$  large. We set

$$\eta_i := a_{i+1} \cdot a_{i-1}/a_i^2, \quad j = j_0, j_1, \dots$$

The basic assumption throughout the present work is that

$$\eta_i \to \eta, \quad \text{as} \quad j \to \infty.$$
(1.2)

This kind of convergence has been introduced and studied by D. Lubinsky in [7], where important theorems resulting from (1.2) with respect to the asymptotic of Toeplitz determinants and uniform convergence of the mth row of the table of classical Padé approximants to f are proved. Therefore, in what follows, condition (1.2) will be called "Lubinsky's smoothness condition".

<sup>\*</sup> This paper was supported in part under Grant 436 of The Bulgarian National Science Foundation.

Let  $\rho(f)$  be the radius of convergence of the power series (1.1). We notice that under Lubinsky's smoothness condition (1.1) represents an entire function, if  $|\eta| < 1$ ; the radius of convergence  $\rho(f)$  is zero, if  $|\eta| > 1$ . If  $|\eta| = 1$ , then (1.1) may have a positive or a zero radius of convergence.

Further, we assume that the numbers  $\eta_n$  tend to  $\eta$  smoothly enough, namely: there exist complex numbers  $\{c_i\}_{i=1}^{\infty}$  with  $c_1 \neq 0$  such that for each  $N, N \in \mathbb{N}, N > 1$ , we have the representation

$$\eta_n = \eta \cdot \left\{ 1 + c_1/n + \sum_{i=2}^{N} c_i/n^i + o(n^{-N}) \right\}.$$
 (1.3)

Introduce the function  $H_n(z)$  with

$$H_{\eta}(z) := \sum_{j=0}^{\infty} \eta^{j(j+1)/2} z^{j}.$$

It is clear that for  $|\eta| < 1$ ,  $H_{\eta}(z)$  is an entire function. If  $|\eta| = 1$ , then  $H_{\eta}(z)$  is holomorphic in the unit disk; in the case when  $|\eta| > 1$ , the radius of convergence is zero.

Notice that  $H_{\eta}(z) = h(\eta z)$ , where h(z) is the partial theta function. Its properties (natural boundary, domains omitting zeros etc.) have been studied in [8].

Let now m be a nonnegative integer. In our further considerations, we will assume that m is fixed.

Further, we assume that the power series (1.1) does not represent a rational function with a number of finite poles, not more than m (we write  $f \notin \mathcal{A}_m$ ).

For each  $n, n \in \mathbb{N}$ , let  $\pi_{n,m}$  (=  $\pi_{n,m}(f)$ ) be the Padé approximant to the function f of order (n, m). We set

$$\pi_{n, m} = P_{n, m}/Q_{n, m},$$

where  $Q_{n,m}(0) = 1$  and both polynomials  $P_{n,m}$  and  $Q_{n,m}$  do not have a common divisor.

Let  $D(n, m) = det\{a_{n-j+k}\}_{j, k=1}^m$  be Toeplitz's determinant formed from the Maclaurin coefficients of (1.1). Under our basic assumption concerning nonrationality of f, it is true that the inequality  $D(n, m) \neq 0$  holds for an infinite sequence of positive integers n (see, for instance, [2] and [3]). Denote by  $\Lambda$  the sequence of those positive integers for which  $deg\ Q_{n,m} = m$ ; as it is known (see [2], [3])  $\Lambda$  is infinite (recall that that  $f \notin \mathcal{M}_m$ ). For any  $n \in \mathbb{N}$  the equality  $\pi_{n,m} \equiv \pi_{k(n),m}$ , where  $k(n) := \max\{k, k \leq n, k \in \Lambda\}$  is valid. For  $n \in \Lambda$  there holds (see [9])

$$(f \cdot Q_{n,m} - P_{n,m})(z) = z^{n+m+1} \cdot (-1)^m \cdot D(n+1, m+1)/D(n, m) + \cdots,$$

and

$$Q_{n,m}(z) = 1 + \cdots + z^m \cdot (-1)^m D(n+1,m)/D(n,m).$$

Recalling now the structure of Padé's table corresponding to f, we assume without losing the generality that the last formulas hold for every  $n \in \mathbb{N}$  starting with number  $n_0$ .

In what follows, we shall call the difference  $f - \pi_{n,m}$  the Padé error function to f of order (n, m).

Recently, the limiting distribution of the zeros of the *m*th row in Padé's table for entire functions with "smooth" Maclaurin coefficients was considered (see [5]). As a consequence, the limiting distribution of the zeros of the sequence of Padé approximants  $\pi_{n,m}$  as  $n \to \infty$  was characterized. The goal of the present paper is to explore analogous problems with respect to the Padé error functions.

Denote by  $S_n(z) = S_n(f, z)$  the *n*th partial sum of the function f(z):

$$S_n(z) := \sum_{j=0}^n a_j z^j.$$

We notice that  $S_n(z) = \pi_{n,0}(z)$  for every  $N \in \mathbb{N}$ .

The starting point for the investigations is the following unpublished result by E. B. Saff with describes the limiting behaviour of the differences  $f - S_n$  as  $n \to \infty$  normalized in an appropriate way.

THEOREM 1. Set

$$W_n(u) := (f - S_n)(ua_n/a_{n+1})/a_{n+1}(ua_n/a_{n+1})^{n+1}.$$

Assume that (1.2) holds with (i):  $|\eta| < 1$  and (ii): with  $|\eta| = 1$  in a way that  $|\eta_n| \le 1$  for all n large enough. Then, respectively,

(i)

$$W_n(u) \to H_n(u)$$
 (1.4i)

uniformly inside in C and

(ii)

$$W_n(u) \to H_n(u)$$
 (1.4ii)

uniformly inside  $\{u : |u| < 1\}$ .

As usual, "uniformly inside" a given set M,  $M \in \mathbb{C}$ , means uniform convergence on compact subsets of M in the uniform norm.

Let now m be a fixed positive integer. The first result in the present paper refers to functions (1.1) for those  $\eta \neq 1$ . Following [8], we introduce the polynomials  $B_m(u) := B_m(u, q)$ ,  $m \in \mathbb{N}$  fixed, as follows:

 $B_{\alpha}(u) := 1$  and for m = 1, 2, ...

$$B_m(u) := B_{m-1}(u) - u \cdot q^{m-1} \cdot B_{m-1}(u/q).$$

When q is not a root of unity, then

$$B_m(-u) = \sum_{j=0}^m \frac{u^j \prod_{k=1}^j (1 - q^{m+1-k})}{\prod_{k=1}^j (1 - q^k)};$$

furthermore,  $B_m(u) = (1 - u)^m$ , when q = 1.

These polynomials are of importance in the investigation of the distribution of the zeros of Padé error functions  $f - \pi_{n,m}$  in the case when the number  $\eta$  in (1.2) is not a root of unity.

For 0 < q < 1, the polynomials  $B_m$  (suitably normalized) are orthogonal with respect to a nonnegative weight on the unit circle (see [1]), so that all their zeros lie in  $\{z, |z| \le 1\}$ . For q = 1 results concerning the distribution of the zeros of the polynomials  $B_m(u)$ , m = 0, 1, ... can be found in [8].

For our goal, we introduce an appropriate normalization of the error functions. Set

$$e_{n,m} := \frac{(f - \pi_{n,m})(ua_n/a_{n+1})}{a_{n+1}(ua_n/a_{n+1})^{n+1}}.$$

The following theorem describes the limiting behaviour of the sequence  $e_{n,m}$  for m fixed and  $n \to \infty$ .

THEOREM 2. Assume that (1.2) holds for a number  $\eta$  with  $\eta \neq \infty$  in the way that (i)  $\eta$  is not a root of unity and (ii)  $\eta$  is a root of unity of order  $m_o$  and satisfies (1.3). Then (i) for any m and (ii) for any m,  $m \leq m_0 - 1$  there holds

$$e_{n,m}(u) \to H_{\eta}(u) + \sum_{k=0}^{m-1} \frac{\prod_{j=1}^{k} (1 - \eta^{j})(-1)^{k+1} u^{k}}{B_{k}(u) B_{k+1}(u)}$$
 as  $n \to \infty$ 

uniformly inside the domains described by Theorem 1), excluding B, where B is the set of the zeros of the polynomials  $B_k = B_k(z, \eta)$ , k = 1, ..., m.

Set 
$$\delta(m, \eta) := min\{|z| : B_m(z, \eta) = 0, k = 1, ..., m\}$$
. From Theorem 2, we get

COROLLARY 1. With the assumptions of Theorem 2, for any  $\varepsilon$ ,  $0 < \varepsilon < 1$ , the Padé error function  $f - \pi_{n,m}$  has for n sufficiently large not more than a finite number of zeros in  $0 < |z| < \delta(m, \eta)(1 - \varepsilon) \cdot |a_n/a_{n+1}|$ .

The next results characterize the limiting behaviour of the error functions as  $n \to \infty$ , m-fixed, in the case when the numbers  $\eta_n$  tend to  $\eta = 1$  in the way described by (1.3).

Denote by  $E_{n,m}(u)$  the error function  $f - \pi_{n,m}$  normalized as follows:

$$E_{n,m}(u) := \frac{(f - \pi_{n,m})(ua_n/a_{n+1})}{(ua_n/a_{n+1})^{n+m+1} \cdot (-1)^m \cdot D(n+1,m+1)/D(n,m)}$$

In the present paper, we prove

THEOREM 3. Let  $m \in \mathbb{N}$  be fixed and  $f \notin \mathcal{H}_m$ . Assume that  $a_j \neq 0$  for j large; assume, further that  $\eta_n$  admits the expansion (1.3) with  $\eta = 1$ ,  $c_1 \neq 0$  and  $|\eta_n| \leq 1$  for all  $n \in \mathbb{N}$  sufficiently large.

 $E_{n,m}(u) \rightarrow (1-u)^{-2m-1}$  as  $n \rightarrow \infty$ 

uniformly inside  $\{u: |u| < 1\}$ .

From Theorem 3, we have

COROLLARY 2. With the assumptions of Theorem 3, for each fixed  $m \in \mathbb{N}$  and any  $\varepsilon$ ,  $0 < \varepsilon < 1$ , the Padé error function  $(f - \pi_{n,m})(z)$  has no zeros in  $0 < |z| < |a_n/a_{n+1}| \cdot (1-\varepsilon)$  for n sufficiently large.

Recall that under our assumptions each Padé error function of order (n, m) has a zero at z = 0 of order m + n + 1.

Further, we consider the special case when  $\eta = 1$  and the first coefficient  $c_1$  in (1.3) is a real negative number. Under this additional condition, the next result provides information about the existence of "extraneous" zeros of the normalized Padé error functions  $E_{n,m}(u)$  and about the limiting behaviour of those zeros as  $n \to \infty$ , as well.

THEOREM 4. If  $\eta = 1$  and  $c_1 < 0$ , then u = 1 is a limit point of zeros of  $\{E_{n,m}(u)\}_{n=1}^{\infty}$ .

For  $n \in N$ , we denote by  $P_n$  the set of the zeros of  $E_{n,m}(u)$ . Set  $P_n := \{\xi_{n,k}\}$  with the normalization  $|1 - \xi_{n,k}| \le |1 - \xi_{n,k+1}|, k = 1, \dots$ . From Theorem 4, we have

$$dist(P_n, 1) \to 0$$
, as  $n \to \infty$ .

For any positive  $\varepsilon$ , denote by  $\iota_n(\varepsilon)$  the number of the zeros of  $\zeta_{n,k}$  which lie in the disk of radius  $\varepsilon$ , centered at u=1. In the present paper we prove

Theorem 5. Under the conditions of Theorem 4, for for any  $\varepsilon$ , we have

$$\liminf_{n \to \infty} \frac{l_n(\varepsilon)}{n} > 0.$$
(1.5)

For a number  $\varepsilon$ ,  $0 < \varepsilon < 1$ , we denote by  $\mathcal{A}_n(\varepsilon)$  the annulus  $(1-\varepsilon)|a_n/a_{n+1}| < |z| < (1+\varepsilon)|a_n/a_{n+1}|$ . From the last theorem, we have

COROLLARY 3. If n=1 and  $c_1 < 0$ , then for any  $\varepsilon$ ,  $0 < \varepsilon < 1$  the Padé error function  $f - \pi_{n,m}$  has, for n large enough, extraneous zeros which are situated in the annulus  $\mathcal{A}_n(\varepsilon)$ . Their number  $k_n(\varepsilon)$  satisfies, as  $n \to \infty$ , condition (1.5).

Set

$$R := \liminf_{n \to \infty} |a_n/a_{n+1}|.$$

(Notice that  $\rho(f) \ge R$ .)

Obviously, if  $R = \infty$ , then f is an entire function. If in addition the conditions of Theorem 4 are fulfilled, then each Padé error function  $f - \pi_{n,m}$  has, for n large enough, extraneous zeros and they go to infinity, as  $n \to \infty$ , with the speed of  $\lfloor a_n/a_{n+1} \rfloor$ .

Further, if  $\eta=1$  and  $0 < R < \infty$ , (in this case  $\rho(f)>0$ ), then the set  $\{z:|z|< R\} - 0$  does not contain, in view of Theorem 3, accumulation points of the zeros of  $(f-\pi_{n,m})$  as  $n\to\infty$  (recall that each Padé error function has a zero at z=0 of order m+n+1). If in addition the parameter  $c_1$  in (1.3) is a negative number, then, in accordance with Theorem 4, the circle  $\{z:|z|=R\}$  contains accumulation points of zeros of  $(f\in\pi_{n,m})(z)$  as  $n\to\infty$ . If  $R=\limsup_{n\to\infty}|a_n/a_{n+1}|$ , then  $R=\rho(f)$  and all the extraneous zeros of  $f-\pi_{n,m}$  tend to the circle  $\{z:|z|=R\}$ .

Finally, if  $\rho(f) = 0$ , then z = 0 is an accumulation point of extraneous zeros of  $f - \pi_{n,m}$ , as  $n \to \infty$ .

Important functions to which Theorem 4 may be applied are the exponential function (see [10])

$$f(z) = \exp z = \sum_{j=0}^{\infty} z^{j}/j!$$

and the Mittag-Lefler function of order  $\lambda$ ,  $\lambda > 0$ , (see [4])

$$f(z) = \sum_{j=0}^{\infty} z^{j} / \Gamma(1 + j/\lambda), \qquad \lambda > 0.$$

The Padé error function for  $e^{-z}$  has been considered in [6].

#### 2. PRELIMINARIES

LEMMA 1. For any n and m, there holds

$$\frac{a_{n+m}}{a_n} = \left(\frac{a_{n+1}}{a_n}\right)^m \prod_{j=1}^{m-1} \eta_{n+m-j}^j.$$

The proof will be omitted. Set

$$D_{n,m} := \frac{D(n,m)}{a_n^m}$$

The following lemma is of essential importance for all the considerations in the present

LEMMA 2 (see [7]). Let f be a formal power series, with  $a_j \neq 0$  for j large. Assume that  $\eta j$  has the asymptotic expansion (1.3) with  $c_1 \neq 0$ . Then for m = 1, 2, ... we have

$$D_{n,m} = (-c_1/n)^{m(m-1)/2} \cdot \prod_{j=1}^{m-1} j^{m-j} \cdot \{1 + \alpha(1,m)/n + o(1/n)\} \quad \text{as} \quad n \to \infty.$$

and

$$\lim_{n\to\infty} Q_{n,m}(ua_n/a_{n+1}) = B_m(u).$$

If (1.2) holds for a number  $\eta$  that is not a root of unity of order m then

$$\lim_{n \to \infty} D_{n,m} = \prod_{j=1}^{m-1} (1 - \eta^j)^{m-j}.$$

We set

$$I_{n,j} := \prod_{l=0}^{j} \eta_{n+l+l}.$$

The next lemma describes the asymptotic behaviour of  $I_{n,j}$  as  $n \to \infty$  for j "small". Before presenting it, we introduce for a given function g and a fixed number  $p, p \in \mathbb{N}$ , the operator

$$\nabla^p g(x) := \sum_{i=0}^p (-1)^i \binom{p}{i} g(x-i),$$

with

$$\nabla^0 f(x) := f(x)$$

and

$$\nabla f(x) := \nabla^1 f(x)$$

LEMMA 3 (see [5]). Assume that  $\eta_j$  has the asymptotic expansion (1, 3) with  $\eta = 1$  and  $c_1 \neq 0$ . Let N be an arbitrary positive integer. Then

(a) for each j,  $j+1 \le n/N$  we have as  $n \to \infty$ 

$$I_{n,j} = 1 + \sum_{s=1}^{N} (j+1) \cdot Q_{s-1}(j)/(n+1)^{s} + M_{N+1}(j,n),$$

where  $Q_s$  is a polynomial of degree  $\leq s$ ;

(b) for each fixed p, p = 0, 1,... and for any j, j + 1 < (n - p)/(N + 2p) the remainder  $M_{N+1}(j,n)$  behaves according to

$$(n+1)^{N+1+p} |\nabla^p M_{N+1}(j,n)| \le \mathcal{C}_{N+1,p}(j+1)^{N+1}$$

with suitable positive constants  $C_{N+1,p}$  which do not depend on n and j.

We notice that

$$Q_0(j) = c_1 (2.1)$$

and

$$Q_1(j) = (jc_1^2 - jc_1 + 2c_2)/2. (2.2)$$

(In what follows, we shall denote by  $C_{a, b, ...}$  and C(...) positive constants that do not depend on n.)

# 3. Proofs of the Results

**Proof of Theorem 1.** Applying Lemma 1 to the normalized error function  $W_n(u)$ , we easily get

$$W_n(u) = 1 + \sum_{j=1}^{\infty} d_{n,j} u^j,$$

where

$$d_{n,j} := \prod_{l=1}^{j} \eta_{n+j+1-l}^{l}. \tag{3.1}$$

First, we notice that under condition (1.2), for any fixed positive integer k there holds

$$1 + \sum_{j=1}^{k} d_{n,j} u^{j} \to \sum_{j=0}^{k} \eta_{j(j+1)/2} z^{j} \quad \text{as} \quad n \to \infty.$$
 (3.2)

We first consider case (i).

Suppose that  $|\eta| < 1$ . Condition (1.2) ensures the existence of a positive number  $\delta$  with

$$|\eta| < 1 - \delta. \tag{3.3}$$

Let  $\varepsilon$  and R be arbitrarily fixed positive numbers. Obviously, there is an integer k such that

$$R(1-\delta)^{(k+1)/2} \le 1/2 \tag{3.4}$$

and

$$(1/2)^k < \varepsilon/2. \tag{3.5}$$

We rewrite  $W_n(u)$  as follows:

$$W_n(u) = 1 + \sum_{j=1}^{k-1} d_{n,j} u^j + \sum_{j=k}^{\infty} d_{n,j} u^j := W_{n,1,k}(u) + W_{n,2,k}(u)$$

From (3.3), we have for every n large enough  $(n > n_{\delta})$  the inequality

$$|d_{n,j}| \le (1-\delta)^{j(j+1)/2}$$
.

From the last inequality, we get for  $n > n_{\delta}$ 

$$\|W_{n,2,k}(u)\|_{|u| \leq R} \leq (R(1-\delta)^{(k+1)/2})^k \cdot \sum_{l=0}^{\infty} R^l (1-\delta)^{(l^2+l(1+2k))/2}.$$

Making now use of (3.4) and (3.5), for every  $n > n_{\delta}$  we obtain

$$\|W_{n,2,k}(u)\|_{|u| \leq R} < \varepsilon.$$

Together with (3.2), this inequality yields statement (i) of Theorem 1.

Assume now that the conditions of case (ii) hold; then for every n large enough  $(n > n_o)$  we have

$$|d_{n,i}| \leq 1$$
.

Repeating now the previous considerations, we come to statement (ii).

Proof of Theorem 2. From the equality (see [2])

$$(\pi_{n,k} - \pi_{n,k+1})(z) = (-1)^{k+1} \frac{z^{n+k+1}D(n+1), k+1}{(Q_{n,k}Q_{n,k+1})(z)D(n,k)}$$

we get

$$(f - \pi_{n,m})(z) = (f - S_n)(z) + \sum_{k=0}^{m-1} (\pi_{n,k} - \pi_{n,k+1})(z)$$

$$= (f - S_n)(z) + \sum_{k=0}^{m-1} (-1)^{k+1}$$

$$\cdot \frac{D(n+1,k+1)}{D(n,k)} \cdot \frac{z^{n+k+1}}{Q_{n,k}(z) Q_{n,k+1}(z)},$$

so that

$$e_{n,m}(u) = W_n(u) + \sum_{k=0}^{m-1} \frac{(-1)^{k+1} u^k D_{n+1,k+1}}{D_{n,k} \cdot (Q_{n,k} Q_{n,k+1}) (u a_n / a_{n+1})}.$$

The statement of Theorem 2 follows now from Lemma 2 and from Theorem 1.

Proof of Theorem 3. Set

$$Q_{n, m} = \sum_{k=0}^{m} q_{k, n, m} z^{m-k}$$

(recall that  $q_{m,n,m} = 1$ ). Completing technical transformations we rewrite  $E_{n,m}$  as

$$E_{n,m}(u) = \frac{1 + \sum_{j=1}^{\infty} d_{n,j} F_{j,n,m} u^{j}}{Q_{n,m}(u a_{n}/a_{n+1})}.$$
 (4.1)

In the last formula

$$F_{j,n,m} = (-1)^m \frac{D_{n,m}}{D_{n+1,m+1}} \cdot \sum_{k=0}^m \frac{a_n^{m-k}}{a_{n+1}^{m-k}} \cdot q_{k,n,m}$$

$$\cdot \prod_{l=1}^k \eta_{n+k+j+1-l}^l \cdot \prod_{l=1}^j \eta_{n+j+1-l}^k. \tag{4.2}$$

Indeed, from the definition of Padé approximants we have

$$\frac{(f.Q_{n,m}-P_{n,m})(ua_n/a_{n+1})}{(ua_n/a_{n+1})^{n+m+1}} = \sum_{j=0}^{\infty} (ua_n/a_{n+1})^j \sum_{k=0}^m a_{n+k+j+1} q_{k,n,m}.$$

Applying now Lemma 1, we easily come to (4.1).

From Sylvester's identity (see [2]), there results the recurrence formulas

$$q_{k,n,m} = q_{k-1,n,m-1} - \tilde{D}(n,m)q_{k,n-1,m-1},$$
  

$$q_{0,n,m} = -\tilde{D}(n,m)q_{0,n-1,m-1},$$

where

$$\widetilde{D}(n,m) := D(n-1,m-1) D(n+1,m)/D(n,m-1) D(n,m).$$

Making use of these formulas, we obtain

$$F_{j,n,m} := \frac{-D(n,m) D(n+1,m)}{D(n+1,m+1) D(n,m-1)} \cdot \frac{a_{n+1}}{a_n} \cdot \{F_{j+1,n,m+1} \cdot I_{n,j} - F_{j+1,n+1,m-1}\}.$$
(4.3)

The next step in the proof is to establish by induction on m that

(a) for every  $N \in \mathbb{N}$  and for j+m < n/(N+3m-1) the following expansion is valid as  $n \to \infty$ 

$$F_{j,n,m} = \prod_{l=1}^{m} \frac{(j+l)}{m!} + \sum_{s=1}^{N} \frac{\mathscr{P}_{s,m}(j)}{(n+1)^{s}} + \mathscr{N}_{N+1,m}(j,n), \tag{4.4}$$

where  $\mathscr{P}_{s,m}(j)$  is a polynomial of degree not exceeding m+s;

(b) for every j, satisfying j+m < n/(N+1+m+2(p+m-1)) there holds, as  $n \to \infty$ ,

$$|(n+1)^{N+p+1} \cdot \nabla^p \mathcal{N}_{N+1,m}(j,n)| < C_m, N+1, p \cdot j^{N+m+1}$$
 (4.5)

with  $C_{m, N+1, p}$  a positive constant not depending on n and on j;

(c) for numbers j with  $j+m \ge n/3m$  we have for  $n \to \infty$ 

$$|F_{i,n,m}| \leqslant \mathbf{c}_m \cdot j^m. \tag{4.6}$$

Check the hypothesis for m = 1. The direct calculation gives

$$F_{j,n,1} = \frac{I_{n,j} - 1}{\eta_{n+1} - 1}. (4.7)$$

In accordance with (1.3), we may write for n sufficiently large

$$1/(\eta_{n+1}-1) = \left\{1 + \sum_{i=1}^{N} g_i/(n+1)^i + o(1/n^N)\right\} \cdot (n+1)/c_1$$

with

$$g_1 = -c_2/c_1$$
.

Using Lemma 3, (2.1) and (4.7), we get for  $F_{i,n,1}$ 

$$F_{j,n,1} = \left\{ (j+1) \left\{ 1 + \sum_{s=1}^{N} \frac{Q_s(j)}{c_1(n+1)^s} \right\} + \frac{(n+1) \cdot M_{N+2}(j,n)}{c_1} \right\} \cdot \left\{ 1 + \sum_{j=1}^{N+1} \frac{g_j}{(n+1)^j} + o(1/n^N) \right\}.$$

The last formula can be rewritten as

$$F_{j,n,1} = j + 1 + \sum_{s=1}^{N} \mathscr{P}_{s,1}(j)/(n+1)^{s} + \mathcal{N}_{N+1,1}(j,n).$$

We easily verify that  $deg \mathscr{D}_{s,1}(j) \le s+1$ . Further, we see that  $\mathscr{N}_{N+1,1}(j,n)$  depends on  $(n+1)\cdot M_{N+2}(j,n)$ . Let now  $p \in \mathbb{N}$  be fixed. Since for j+1 < (n-p)/(N+1+2p) the remainder  $M_{N+2}(j,n)$  behaves in the way described by Lemma 3, then  $\mathscr{N}_{N+1,1}(j,n)$  satisfies as  $n \to \infty$  the induction hypothesis (4.5) for numbers j with j+1 < n/(N+2+2p) and  $C_{1,N+1,p}$  being a suitable positive constant.

Also, for  $j + 1 \ge n/3$ , (4.7) implies (4.6) for m = 1 with a suitable positive constant.

Thus the assertion is proved for m = 1.

Set now

$$\mathcal{Q}_{n,m} := \frac{-D(n,m) D(n+1,m)}{D(n+1,m+1) D(n,m-1)} \cdot \frac{a_{n+1}}{a_n}.$$

Before proving the induction hypothesis for an arbitrary number m, we consider the asymptotic behaviour of  $\mathcal{D}_{n,m}$  as  $n \to \infty$  and m is fixed. From Lemma 2, there follows for every  $N \ge 1$  the representation

$$\mathscr{D}_{n,m} = \frac{n+1}{mc_1} \cdot \left\{ 1 + \sum_{i=1}^{N} \frac{\alpha_{i,m}}{(n+1)^i} + o(1/(n+1)^N) \right\}, \quad \text{as} \quad n \to \infty.$$

Suppose (4.4)–(4.6) are valid for some m. Let  $N \in \mathbb{N}$  be fixed. Then in view of (4.3) we may write

$$F_{j,n,m+1} = \frac{n+1}{(m+1)c_1} \left\{ 1 + \sum_{i=1}^{N} \frac{\alpha_{i,m+1}}{(n+1)^i} + o(1/(n+1)^N) \right\}$$

$$\cdot \left\{ \left\{ 1 + \sum_{s=1}^{N+1} (j+1) \cdot Q_{s-1}(j)/(n+1)^s + M_{N+2}(j,n) \right\}$$

$$\cdot \left\{ \prod_{l=2}^{m+1} \frac{j+l}{m!} + \sum_{s=1}^{N+1} \frac{\mathcal{P}_{s,m}(j+1)}{(n+1)^s} + \mathcal{N}_{N+2,m}(j+1,n) \right\}$$

$$- \left\{ \prod_{l=2}^{m+1} \frac{j+l}{m!} + \sum_{s=1}^{N+1} \frac{\mathcal{P}_{s,m}(j+1)}{n^s} + \mathcal{N}_{N+2,m}(j+1,n-1) \right\} \right\}.$$

Using (2.1) and (2.2), we rewrite this formula in the required form, namely,

$$F_{j,n,m+1} = \prod_{l=1}^{m+1} \frac{(j+l)}{(m+1)!} + \sum_{s=1}^{N} \mathscr{P}_{s,m+1}(j)/(n+1)^{s} + \mathscr{N}_{N+1,m+1}(j,n),$$

where obviously each polynomial  $\mathscr{P}_{s.m+1}$  is of degree not exceeding m+s+1. Further, we see that the remainder  $\mathscr{N}_{N+1,m+1}(j,n)$  depends on the difference  $(n+1)\cdot\{\mathscr{N}_{N+2,m}(j+1,n)-\mathscr{N}_{N+2,m}(j+1,n-1)\}=(n+1)\cdot\nabla\mathscr{N}_{N+2,m}(j+1,n)$ . From the definition of  $\nabla^p$  we easily set

$$\nabla^{p} \{ (n+1) \cdot \nabla_{\mathcal{N}_{N+2,m}} (j+1,n) \}$$

$$= (n+1) \cdot \nabla^{p+1} \mathcal{N}_{N+2,m} (j+1,n) - p \cdot \nabla^{p} \mathcal{N}_{N+2,m} (j+1,n-1).$$

Therefore, for  $j+1+m < \mu_{n,p} := \min(n/(N+2+m+2(p+m)), (n-1)/(N+2+m+2(p+m-1)))$  the term  $\nabla^p \mathcal{N}_{N+1,m+1}(j,n)$  behaves in the way described by (4.6). The observation that  $\mu_{n,p} = n/(N+2+m+2(p+m))$  for n large establishes (4.5) for m+1.

Further, for  $j + 1 + m \ge n/(3m + 3)$  we easily check that

$$|F_{i,n,m+1}| \leq \mathbf{c}_{m+1} j^{m+1}$$
.

This proves the induction hypothesis (4.4)–(4.6) for m+1.

We notice for j + m < n/3m the validity of the inequalities

$$F_{j,n,m} = \prod_{l=1}^{m} \frac{(j+l)}{m!} + \mathcal{N}_{1,m}(j,n)$$
 (4.8)

with

$$|n \cdot \mathcal{N}_{1,m}(j,n)| < \mathcal{C}_{1,m}(j,n)| < \mathcal{C}_m \cdot j^{m+1}$$
 as  $n \to \infty$ . (4.9)

We now are in position to prove Theorem 2.

Set, for any  $k \in \mathbb{N}$ 

$$e_{n,m,k}(u) := \sum_{j=0}^{k-1} d_{n,j} F_{j,n,m} u^{j}$$

and

$$\mathcal{E}_{n,m,k}(u) := \sum_{j=k}^{\infty} d_{n,j} F_{j,n,m} u^{j}.$$

From (4.1), we have

$$E_{n,m}(u) = \frac{e_{n,m,k}(u) + \mathcal{E}_{n,m,k}(u)}{Q_{n,m}(ua_n/a_{n+1})}.$$
 (4.1)'

Let  $\delta$  be a fixed positive number. For  $n \in \mathbb{N}$  sufficiently large we write

$$\mathscr{E}_{n,\,m,\,k}(e^{-\delta}) := \left\{ \sum_{j=\,k}^{j\,<\,n/3m\,-\,m} + \sum_{j\,\geqslant\,n/3m\,-\,m}^{\infty} \right\} \, d_{n,\,j} \, F_{j,\,n,\,m} \, e^{\,-\,\delta j}.$$

Applying (4.4)-(4.6), we establish that

$$\|\mathscr{E}_{n, m, k}\|_{|u| \leq e^{-\delta}} \leq C(e^{-k\delta} + e^{-n\delta}),$$

where C is a constant independent of k and n. On the other hand, for any fixed j we have

$$F_{j,n,m} \to \prod_{l=1}^m \frac{(j+l)}{m!}$$
 as  $n \to \infty$ ,

so that, for any fixed k we may write

$$e_{n,m,k}(u) \to \sum_{i=0}^{k-1} \prod_{l=1}^{m} \frac{(j+l)}{m!}$$
 as  $n \to \infty$ .

Hence the statement of Theorem 3 follows easily. Indeed,

$$\sum_{j=0}^{\infty} u^j \prod_{l=1}^{m} (j+l)/m! = \frac{1}{m!} \cdot (u^m (1-u)^{-1})^{(m)} = (1-u)^{-m-1}.$$

This result, (4.1)', and Lemma 2 establish the statement of Theorem 3.

**Proof of Theorem 4.** In our further considerations, we shall deal with the functions  $\mathcal{E}_{n,m}(u) := \mathcal{E}_{n,m,0}(u)$ . Recall that m is fixed and  $n \to \infty$ . In accordance with (3.1) we have

$$d_{n,j} := \prod_{l=1}^{j} \eta_{n+j+1-l}^{l} \quad \text{as} \quad n \to \infty.$$

Arguing in the same way as in [5], we shall establish that for every  $\delta$  small enough there exists a positive integer  $n_{\delta}$  such that for any  $n > n_{\delta}$  the inequality

Re 
$$\mathcal{E}_{n,m}(e^{2\delta}) \geqslant C(0) \cdot e^{n \cdot \alpha(\delta)}$$
 (5.1)

is valid, where

$$\alpha(\delta) := \delta^2/(-c_1 + \delta)$$

and C(0) is a positive constant, independent of n and  $\delta$ .

For convenience, we shall use the notation  $c_1 := -2d_1$ . In the conditions of Theorem 4,  $d_1 > 0$ . In [5], the validity of the following inequalities for each n large  $(n > n_0)$  was established:

$$|\eta_n| \le 1 - d_1/n \tag{5.2}$$

and

$$|\eta_n| \leqslant |\eta_{n+1}|. \tag{5.3}$$

The two last iunequalities lead to

$$|d_{n,j}| \le (|\eta_{n+j}|)^{j(j+1)/2} \le (1 - d_1/(n+j))^{j(j+1)/2}.$$
 (5.4)

This inequality means that each function  $\mathcal{E}_{n,m}(u)$  admits an analytic continuation in the disk  $\{u, |u| < e^{d_1/2}\}$ .

Let  $\varepsilon$  be a fixed positive number,  $\varepsilon < 1$ .

In our further considerations, we will assume that for  $n > n_0$  the inequalities

$$(n/d_1)|\log(1-d_1/n)| \ge 1-\varepsilon \tag{5.5}$$

and

$$|\operatorname{Im} \eta_n| \le C(1) \cdot \operatorname{Re} \eta_n / n^2 \tag{5.6}$$

are fulfilled for a suitable positive constant C(1). Without loss of generality, we may assume that C(1) > 1. In accordance with Theorem 2, (4.8), (4.9) and (4.6), we may also write

$$|\mathcal{N}_{1,m}(j,n)| \le C(1) \cdot j^{m+1}/n$$
 (5.7)

for j + m < n/3m and

$$|F_{j,n,m}| \le C(1)j^m$$
 (5.8)

otherwise. Select a positive number  $\delta_0$  such that

$$0 < 6C(1)m!\delta_0/(d_1(1-\varepsilon) - 6\delta_0) < 1/3, \tag{5.9}$$

and set

$$d(\varepsilon, \delta_0) := d_1(1-\varepsilon) - 6\delta_0$$
.

In what follows, we shall assume that each  $n > n_0$  satisfies the inequality

Re 
$$\eta_n \ge 1 - (2d_1 + \delta_0)/n > 0.$$
 (5.10)

Let  $\delta$  be a positive number such that  $\delta < \delta_0$ . Obviously, there is an integer  $n_{\delta}$ ,  $n_{\delta} > n_0$ , such that for any  $n \ge n_{\delta}$  the inequalities

Re 
$$\eta_n \ge 1 - (2d_1 + \delta)/n$$
 (5.11)

and

$$\frac{(n+1)}{2d_1+\delta} \cdot \left| \log\left(1 - \frac{2d_1+\delta}{n+1}\right) \right| < 2 \tag{5.12}$$

are fulfilled. Set  $j_1(\delta) := 6\delta/d(\varepsilon, \delta)$ . For  $j > j_1(\delta) \cdot n$  we obtain, in accordance with (5.4) and (5.5) that

$$|d_{n,j}| \leq e^{-3j\delta}$$
,

which implies with respect to (5.9), (5.7) and to the choice of  $\delta$  the inequality

$$\left\| \sum_{j=j,(\delta)n}^{\infty} d_{n,j} F_{j,n,m} u^{j} \right\|_{|u|=c^{2\delta}} \leq C(\delta_{0}) e^{-\delta j_{1}(\delta)n}.$$
 (5.13)

On the other hand, we have for  $j+1 \le j_1(\delta) \cdot n$  by (5.3), (5.6) and the choice of  $\delta$ 

$$\left|\frac{d_{j,n}}{\prod_{l=1}^{j} \left(\operatorname{Re} \eta_{n+j} + 1 - l\right)^{l}} - 1\right| \leqslant C(2) \cdot \delta^{2},$$

where  $C(2) = 18C(1)/d_{\varepsilon, \delta}^2$ . Notice that the choice of  $\delta$  ensures that  $C(2) \cdot \delta_0^2 < 1/2$ .

Further, the last inequality with respect to  $d_{n,j}$  leads to

$$(1 - C(2)\delta^{2}) \prod_{l=1}^{j} (\operatorname{Re} \eta_{n+j+1-l})^{l} \leq \operatorname{Re} d_{n,j}$$

$$\leq (1 + C(2)\delta^{2}) \prod_{l=1}^{j} (\operatorname{Re} \eta_{n+j+1-l})^{l}$$

and

$$|\text{Im } d_{n,j}| \le C(2)\delta^2 \prod_{l=1}^{j} (\text{Re } \eta_{n+j+1-l})^l.$$

Next, we assume without loss of generality that the integer  $n_{\delta}$  satisfies the additional condition

$$j_1(\delta) \cdot n_{\delta} + m - 1 < n_{\delta}/3m. \tag{5.14}$$

Using now (4.8), (5.7), and the last inequalities, we get

$$\operatorname{Re} F_{j,n,m} \cdot \operatorname{Re} d_{n,j} - \operatorname{Im} F_{j,n,m} \cdot \operatorname{Im} d_{n,j} \geqslant Q_{\delta_0}(j) \cdot \prod_{l=1}^{j} (\operatorname{Re} \eta_{n+j+1-l})^l,$$

with

$$Q_{\delta_0}(j) := (1 - C(2)\delta_0^2) \cdot \left( \prod_{l=1}^m (j+l)/m! - C(1)j^m \cdot \frac{\delta_0}{d(\varepsilon, \delta_0)} \right) - C(2)\delta_0^2 C(1)j^m \cdot \frac{6\delta_0}{d(\varepsilon, \delta_0)}.$$

As we see,  $Q_{\delta_0}$  is a polynomial of degree exactly m and all its coefficients are positive. Further, in view of (5.10) and to the choice of  $\delta_0$  we may write

Re 
$$F_{i,n,m}$$
 · Re  $d_{n,j} - \text{Im } F_{i,n,m}$  · Im  $d_{n,j} > 0$ . (5.15)

Recall that the last inequality is valid for  $n > n_{\delta}$  (compare with (5.14)) for any j with  $j+1 < j_1(\delta) \cdot n$ . Set now  $j_2(\delta) := \delta/(2d_1+\delta)$  and consider  $\delta_{n,m,\delta}(e^{2\delta}) := \sum_{j=0}^{j_2(\delta)(n+1)-1} d_{n,j}F_{j,n,m}(e^{2\delta j})$ . From (5.12) we get

$$j+1 < \frac{2\delta}{\left|\log\left(1 - \frac{2d_1 + \delta}{n+1}\right)\right|},$$

which immediately implies

$$\left(1 - \frac{2d_1 + \delta}{n+1}\right)^{j(j+1)/2} > e^{-\delta j}.$$

Taking into account (5.11), we conclude from this inequality that

$$\prod_{l=1}^{j} (\text{Re } \eta_{n+j+1-l})^{l} > e^{-\delta j}.$$

Recall that the last inequality holds for  $j < j_2(\delta)(n+1)-1$  and for n "large". Now, combining (4.13), (5.15), and the last result, we get

$$\operatorname{Re} \mathscr{E}_{n,m}(e^{2\delta}) > \sum_{j=0}^{j_2(\delta)(n+1)-1} Q_{\delta_0}(j) e^{\delta j} - C(\delta_0) e^{-6(\delta)^2 n/d(\nu,\delta)}.$$

Inequality (5.1) results from here.

Now, it easily follows that the point u=1 attracts, as  $n \to \infty$ , at least one zero of the sequence  $E_{n,m}(u)$ . Before presenting the proof, we introduce the notation  $U_a(r)$ ; that is the open disk of radius r, centered at the point a; further, we set  $\Gamma_a(r) := \partial U_a(r)$ .

Assume now the contrary that there is a disk  $U_1(e^{-p})$ ,  $1 + e^{-p} < e^{d_1/2}$  such that  $\mathcal{E}_{n,m}(u) \neq 0$  there. Set  $\tau := \log(1 + e^{-p})$ . Let  $\theta$  be an arbitrary positive number with  $1 + e^{-p} \cdot e^{\theta} < e^{d_1/2}$  and  $0 < 1 - e^{-p} \cdot e^{\theta}$ . Set  $\tau(\theta) := \log(1 + e^{-p+\theta})$ . Without loss of generality we may assume that the number  $\tau(\theta)/2$  satisfies inequality (5.9). In the notations of the preceding considerations, we introduce for n "large" in the previous sense that series  $A_n$  and  $B_n$  as follows:

$$A_n(u) := \sum_{j+1>j, (\tau(\theta)/2)>n}^{\infty} d_{n,j} F_{j,n,m} u^{j}$$

and

$$B_n(u) := \sum_{j=0}^{j_1(\tau(\theta)/2) \cdot n - 1} d_{n,j} F_{j,n,m} u^j.$$

Repeating the same considerations as above (see (5.13)), we establish that

$$||A_n||_{U_0(e^{\tau}(\theta))} \le C(\tau(\theta))e^{-n\tau(\theta)j_1(\tau(\theta)/2)}.$$
 (5.16)

On the other hand, for  $B_n$  we easily get

$$||B_n||_{L_{[n]}e^{\tau}(\theta))} \leq C(\tau(\theta))e^{n\tau(\theta)j_1(\tau(\theta)/2)}.$$
 (5.17)

Set now  $V:=U_0(1)\cup U_1(e^{-\rho})$  and let  $X_n$  be the regular branch of  $(\mathscr{E}_{n,m})(u)^{1/n}$  determined by the condition  $X_n(0)=1$ . Inequalities (5.16) and (5.17) ensure the uniform boundedness of the sequence  $\{X_n\}$  in V. By Theorem 2 and by the theorem of uniqueness for holomorphic functions,

$$X_n \rightarrow 1$$

uniformly inside  $U_0(1)$  and therefore, inside V, as well. On the other hand, by (5.1) for any  $\delta < \tau$  the inequality  $X_n(e^{\delta}) \ge \exp n(\delta^2/2(4d_1 + \delta))$  is valid

for each n large enough. This contradicts with the last result about the convergence of the sequence  $X_n(u)$ . The contradiction we obtained establishes the statement of Theorem 5.

**Proof of Theorem 5.** Preserving the notations of Theorem 4, denote now by  $\xi_{n,k}$ ,  $k=1,...,\iota_n$  the zeros of  $\mathcal{E}_{n,m}(u)$  in  $U_1(e^{-r})$ . By Theorem 3,  $\iota_n \ge 1$ .

We shall show that

$$\lim_{n\to\infty}\inf_{\infty}\,\iota_n/n>0.$$

Suppose to the contrary that there is an infinite sequence  $\Lambda$ ,  $\Lambda \subset \mathbb{N}$  such that

$$\lim_{n \to \infty} i_n/n = 0. \tag{6.1}$$

Set

$$q_n(u) := \prod_{k=1}^{l_n} \left(1 - \frac{u}{\xi_{n,k}}\right)$$

and

$$\chi_n(u) := \left\{ \frac{\mathscr{E}_{n,m}(u)}{q_n(u)} \right\}^{1/n},$$

with  $\chi_n(0) = 1$ .

Consider the sequence  $\{\chi_n\}_{n\in A}$ .

For  $q_n(u)$  we have

$$\min_{u \in T_0(e^{\tau(\theta)})} |q_n(u)| \ge \left\{ \frac{e^{-\rho}(e^{\theta} - 1)}{(1 + e^{-\rho})} \right\}^{t_n}.$$

Combine now the last equality, (5.16) and (5.17). By virtue of (6.1) and by the maximum principle for holomorphic functions, the sequence  $\{\chi_n\}_{n\in A}$  is uniformly bounded on V. (recall that accordingly to the geometric construction and to the choice of  $\theta$ ,  $V \subset U_0(\tau(\theta))$ .

Select now a positive number r with  $r < 1 - e^{-r\rho}e^{\theta}$ . For  $u \in U_0(r)$ , we obviously have

$$\left\{\frac{(1-e^{-r\rho}+r)}{(1-e^{-r\rho})}\right\}^{t_n} \geqslant |q_n(u)| \geqslant \left\{\frac{(1-e^{-r\rho}-r)}{(1-e^{-r\rho})}\right\}^{t_n}.$$

Therefore, in view of Theorem 4 and of (6.2), we may write

$$\chi_n \to 1$$
 as  $n \to \infty$ ,  $n \in \Lambda$ ,

on the disk  $U_0(r)$ . Therefore

$$\chi_n \to 1$$
 as  $n \to \infty$ ,  $n \in \Lambda$ , (6.2)

uniformly inside the domain V.

Select a positive number  $\varepsilon_0$  such that

$$\varepsilon_0 < \frac{e^{-\rho}}{4}$$
.

Set  $\Omega(\varepsilon_0) := \bigcup_{n \in A} \bigcup_{k=1}^{\iota_n} \{ u, |u - \xi_{n,k}| < \varepsilon_0 / \iota_n \cdot n^2 \}$ . Obviously,

$$mes_1(\Omega(\varepsilon_0)) < \varepsilon_0 < \frac{e^{-\rho}}{4}.$$
 (6.3)

Further, for  $u \in U_1(e^{-\rho}) - \Omega(\varepsilon_0)$  we have

$$\left\{\frac{2e^{-r}}{(1-e^{-r})}\right\}^{\ell_n} \geqslant |q_n(u)|.$$

The choice of  $\varepsilon_0$  and (6.3) ensures the existence of a positive number  $\delta$ ,  $\delta < \tau$  such that  $e^{\delta} \in U_1(e^{-p}) - \Omega(\varepsilon_0)$ . Applying (5.1) to that number  $\delta$ , using the last estimate and (6.1), we conclude that  $\chi_n(e^{\delta}) > e^{n\delta^2/2(4d_1+\delta)}$  for n large enough. This inequality forms a contradiction with (6.2). Consequently, (1.5) is valid and Theorem 5 is true.

## REFERENCES

- R. ASKEV AND M. ISMAIL, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc 49 (1984), 300.
- 2. G. A. BAKER, "Essentials of Padé Approximants," Academic Press, New York, 1975.
- G. A. BAKER JR. AND P. GRAVES-MORRIS, Padé approximants.
   Basic theory, in "Encyclopedia of Mathematics and Its Applications," Cambridge Univ. Press, Cambridge, 11K, 1981
- A. Edrei, E. B. Saff, and R. S. Varga, "Zeros of Sections of Power Series," Lecture Notes of Mathematics, Vol. 1002, Springer-Verlag, Berlin, 1983.
- R. K. KOVACHEVA AND E. B. SAFF, Zeros of Padé approximants for entire functions with smooth Maclaurin coefficients, J. Approx. Theory 79 (1994), 347-384.
- J. LAM AND K. W. CHUNG, Error bounds for Padé approximants of e<sup>--z</sup> on the real axis, J. Approx. Theory 69 (1992), 222-230.

- 7. D. S. Lubinsky, Uniform convergence of rows of Padé table for functions with smooth Maclaurin coefficients, *Constr. Approx.* **3** (1987), 307-330.
- 8. D. S. LUBINSKY AND E. B. SAFF, Convergence of Padé approximants of partial theta function and Rogers-Szegő polynomials, *Constr. Approx.* 3 (1987), 331-361.
- 9. O. Perron, "Die Lehre von den Kettenbrüchen," 3rd ed., Chelsea, New York, 1957.
- 10. E. B. SAFF AND R. S. VARGA, On zeros and poles of Padé approximants to  $e^z$ , Numer. Math. 25 (1975), 1-14.