Zeros of Padé Error Functions for Functions with Smooth Maclaurin Coefficients

R. K. Kovacheva*
Institute of Mathematics, Bulgarian Academy of Sciences, 1090 Sofia, Bulgaria
Communicated by Doron S. Lubinsky

Received June 14, 1994; accepted in revised form November 26, 1994

We deal with functions $f(z):=\sum_{n=0}{ }_{n} a_{n} z^{n}$ whose coefficients satisfy Lubinsky's smoothness condition, namely, $a_{j+1} \cdot a_{j-1} / a_{j}^{2} \rightarrow \eta$ as $j \rightarrow \infty, \eta \neq \infty$. In the present paper, theorems concerning the asymptotic behaviour of the normalized (in an appropriate way) Padé error functions ($f-\pi_{n, m}$) as $n \rightarrow \infty, m$-fixed, are provided. As a consequence, results concerning the number of the zeros and of their limiting distribution are deduced. 1995 Academic Press. Inc.

1. Introduction and Main Results

Let

$$
\begin{equation*}
f(z):=\sum_{j=0}^{\infty} a_{j} z^{j} \tag{1.1}
\end{equation*}
$$

be a function with $a_{j} \neq 0$ for all nonnegative integers $j,(j \in \mathbf{N})$ large. We set

$$
\eta_{j}:=a_{j+1} \cdot a_{j-1} / a_{j}^{2}, \quad j=j_{0}, j_{1}, \ldots
$$

The basic assumption throughout the present work is that

$$
\begin{equation*}
\eta_{j} \rightarrow \eta, \quad \text { as } \quad j \rightarrow \infty . \tag{1.2}
\end{equation*}
$$

This kind of convergence has been introduced and studied by D. Lubinsky in [7], where important theorems resulting from (1.2) with respect to the asymptotic of Toeplitz determinants and uniform convergence of the m th row of the table of classical Pade approximants to f are proved. Therefore, in what follows, condition (1.2) will be called "Lubinsky's smoothness condition".

* This paper was supported in part under Grant 436 of The Bulgarian National Science Foundation.

Let $\rho(f)$ be the radius of convergence of the power series (1.1). We notice that under Lubinsky's smoothness condition (1.1) represents an entire function, if $|\eta|<1$; the radius of convergence $p(f)$ is zero, if $|\eta|>1$. If $|\eta|=1$, then (1.1) may have a positive or a zero radius of convergence.

Further, we assume that the numbers η_{n} tend to η smoothly enough, namely: there exist complex numbers $\left\{c_{i}\right\}_{i=1}^{\infty}$ with $c_{1} \neq 0$ such that for each $N, N \in \mathbf{N}, N>1$, we have the representation

$$
\begin{equation*}
\eta_{n}=\eta \cdot\left\{1+c_{1} / n+\sum_{i=2}^{N} c_{i} / n^{i}+o\left(n^{N}\right)\right\} \tag{1.3}
\end{equation*}
$$

Introduce the function $H_{n}(z)$ with

$$
H_{n}(z):=\sum_{j=0}^{\infty} \eta^{\mu j+1) / 2} z^{j}
$$

It is clear that for $|\eta|<1, H_{\eta}(z)$ is an entire function. If $|\eta|=1$, then $H_{n}(z)$ is holomorphic in the unit disk; in the case when $|\eta|>1$, the radius of convergence is zero.

Notice that $H_{\eta}(z)=h(\eta z)$, where $h(z)$ is the partial theta function. Its properties (natural boundary, domains omitting zeros etc.) have been studied in [8].

Let now m be a nonnegative integer. In our further considerations, we will assume that m is fixed.

Further, we assume that the power series (1.1) does not represent a rational function with a number of finite poles, not more than m (we write $f \notin \mathscr{R}_{m}$).

For each $n, n \in \mathbf{N}$, let $\pi_{n, m}\left(=\pi_{n, m}(f)\right)$ be the Padé approximant to the function f of order (n, m). We set

$$
\pi_{n, m}=P_{n, m} / Q_{n, m}
$$

where $Q_{n, m}(0)=1$ and both polynomials $P_{n, m}$ and $Q_{n, m}$ do not have a common divisor.

Let $D(n, m)=\operatorname{det}\left\{a_{n-j+k}\right\}_{j, k=1}^{m}$ be Toeplitz's determinant formed from the Maclaurin coefficients of (1.1). Under our basic assumption concerning nonrationality of f, it is true that the inequality $D(n, m) \neq 0$ holds for an infinite sequence of positive integers n (see, for instance, [2] and [3]). Denote by Λ the sequence of those positive integers for which $d e g Q_{n, m}=m$; as it is known (see [2], [3]) A is infinite (recall that that $f \notin \mathscr{R}_{m}$). For any $n \in \mathbf{N}$ the equality $\pi_{n, m} \equiv \pi_{k(n), m}$, where $k(n):=\max \{k, k \leqslant n, k \in A\}$ is valid. For $n \in A$ there holds (see [9])

$$
\left(f \cdot Q_{n, m}-P_{n, m}\right)(z)=z^{n+m+1} \cdot(-1)^{m} \cdot D(n+1, m+1) / D(n, m)+\cdots
$$

and

$$
Q_{n, m}(z)=1+\cdots+z^{m} \cdot(-1)^{m} D(n+1, m) / D(n, m)
$$

Recalling now the structure of Pade's table corresponding to f, we assume without losing the generality that the last formulas hold for every $n \in \mathbf{N}$ starting with number n_{0}.

In what follows, we shall call the difference $f-\pi_{n, m}$, the Pade error function to f of order (n, m).

Recently, the limiting distribution of the zeros of the m th row in Pade's table for entire functions with "smooth" Maclaurin coefficients was considered (see [5]). As a consequence, the limiting distribution of the zeros of the sequence of Pade approximants $\pi_{n, m}$ as $n \rightarrow \infty$ was characterized. The goal of the present paper is to explore analogous problems with respect to the Pade error functions.

Denote by $S_{n}(z)=S_{n}(f, z)$ the nth partial sum of the function $f(z)$:

$$
S_{n}(z):=\sum_{j=0}^{n} a_{j} z^{j}
$$

We notice that $S_{n}(z)=\pi_{n \cdot 0}(z)$ for every $N \in \mathbf{N}$.
The starting point for the investigations is the following unpublished result by E. B. Saff with describes the limiting behaviour of the differences $f-S_{n}$ as $n \rightarrow \infty$ normalized in an appropriate way.

Theorem 1. Set

$$
W_{n}(u):=\left(f-S_{n}\right)\left(u a_{n} / a_{n+1}\right) / a_{n+1}\left(u a_{n} / a_{n+1}\right)^{n+1}
$$

Assume that (1.2) holds with (i): $|\eta|<1$ and (ii): with $|\eta|=1$ in a way that $\left|\eta_{n}\right| \leqslant 1$ for all n large enough. Then, respectively,
(i)

$$
\begin{equation*}
W_{n}(u) \rightarrow H_{n}(u) \tag{1.4i}
\end{equation*}
$$

umiformly inside in C and
(ii)

$$
\begin{equation*}
W_{n}(u) \rightarrow H_{n}(u) \tag{1.4ii}
\end{equation*}
$$

uniformly inside $\{u:|u|<1\}$.
As usual, "uniformly inside" a given set $M, M \in \mathbf{C}$, means uniform convergence on compact subsets of M in the uniform norm.

Let now m be a fixed positive integer. The first result in the present paper refers to functions (1.1) for those $\eta \neq 1$. Following [8], we introduce the polynomials $B_{m}(u):=B_{m}(u, q), m \in \mathbf{N}$ fixed, as follows:
$B_{o}(u):=1$ and for $m=1,2, \ldots$

$$
B_{m}(u):=B_{m-1}(u)-u \cdot q^{m-1} \cdot B_{m-1}(u / q)
$$

When q is not a root of unity, then

$$
B_{m}(-u)=\sum_{j=0}^{m} \frac{u^{j} \prod_{k=1}^{j} \frac{\left(1-q^{m+1-k}\right)}{\prod_{k=1}^{j}}\left(1-q^{k}\right)}{\text { m }}
$$

furthermore, $B_{m}(u)=(1-u)^{m}$, when $q=1$.
These polynomials are of importance in the investigation of the distribution of the zeros of Pade error functions $f-\pi_{n, m}$ in the case when the number η in (1.2) is not a root of unity.

For $0<q<1$, the polynomials B_{m} (suitably normalized) are orthogonal with respect to a nonnegative weight on the unit circle (see [1]), so that all their zeros lie in $\{z,|z| \leqslant 1\}$. For $q=1$ results concerning the distribution of the zeros of the polynomials $B_{m}(u), m=0,1, \ldots$ can be found in [8].

For our goal, we introduce an appropriate normalization of the error functions. Set

$$
e_{n, m}:=\frac{\left(f-\pi_{n, m}\right)\left(u a_{n} / a_{n+1}\right)}{a_{n+1}\left(u a_{n} / a_{n+1}\right)^{n+1}}
$$

The following theorem describes the limiting behaviour of the sequence $e_{n, n}$ for m fixed and $n \rightarrow \infty$.

Theorem 2. Assume that (1.2) holds for a number η with $\eta \neq \infty$ in the way that (i) η is not a root of unity and (ii) η is a root of unity of order $m_{\text {. }}$ and satisfies (1.3). Then (i) for any m and (ii) for any $m, m \leqslant m_{0}-1$ there holds

$$
e_{n, m}(u) \rightarrow H_{n}(u)+\sum_{k=0}^{m-1} \frac{\prod_{j=1}^{k}\left(1-\eta^{j}\right)(-1)^{k+1} u^{k}}{B_{k}(u) B_{k+1}(u)} \quad \text { as } \quad n \rightarrow \infty
$$

uniformly inside the domains described by Theorem 1), excluding \mathscr{B}, where \mathscr{B} is the set of the zeros of the polynomials $B_{k}=B_{k}(z, \eta), k=1, \ldots, m$.

Set $\delta(m, \eta):=\min \left\{|z|: B_{m i}(z, \eta)=0, k=1, \ldots, m\right\}$. From Theorem 2, we get
Corollary 1. With the assumptions of Theorem 2, for any $\varepsilon, 0<\varepsilon<1$, the Padé error function $f-\pi_{n, m}$ has for n sufficiently large not more than a finite number of zeros in $0<|z|<\delta(m, \eta)(1-\varepsilon) \cdot\left|a_{n} / a_{n+1}\right|$.

The next results characterize the limiting behaviour of the error functions as $n \rightarrow \infty, m$-fixed, in the case when the numbers η_{n} tend to $\eta=1$ in the way described by (1.3).

Denote by $E_{n, m}(u)$ the error function $f-\pi_{n, m}$ normalized as follows:

$$
E_{n, m}(u):=\frac{\left(f-\pi_{n, m}\right)\left(u a_{n} / a_{n+1}\right)}{\left(u a_{n} / a_{n+1}\right)^{n+m+1} \cdot(-1)^{m} \cdot D(n+1, m+1) / D(n, m)}
$$

In the present paper, we prove
Theorem 3. Let $m \in \mathbf{N}$ be fixed and $f \notin \mathscr{R}_{m}$. Assume that $a_{j} \neq 0$ for j large ; assume, further that η_{n} admits the expansion (1.3) with $\eta=1, c_{1} \neq 0$ and $\left|\eta_{n}\right| \leqslant 1$ for all $n \in \mathbf{N}$ sufficiently large.

Then

$$
E_{n, m}(u) \rightarrow(1-u)^{2 n+-1} \text { as } n \rightarrow \infty
$$

uniformly inside $\{u:|u|<1\}$.
From Theorem 3, we have

Corollary 2. With the assumptions of Theorem 3, for each fixed $m \in \mathbf{N}$ and any $\varepsilon, 0<\varepsilon<1$, the Pade error function $\left(f-\pi_{n, \ldots}\right)(z)$ has no zeros in $0<|z|<\left|a_{n} / a_{n+1}\right| \cdot(1-\varepsilon)$ for n sufficiently large.

Recall that under our assumptions each Padé error function of order (n, m) has a zero at $z=0$ of order $m+n+1$.

Further, we consider the special case when $\eta=1$ and the first coefficient c_{1} in (1.3) is a real negative number. Under this additional condition, the next result provides information about the existence of "extraneous" zeros of the normalized Pade error functions $E_{n, m}(u)$ and about the limiting behaviour of those zeros as $n \rightarrow \infty$, as well.

Theorem 4. If $\eta=1$ and $c_{1}<0$, then $u=1$ is a limit point of zeros of $\left\{E_{n, m}(u)\right\}_{n=1}^{r}$.

For $n \in N$, we denote by P_{n} the set of the zeros of $E_{n, m}(u)$. Set $P_{n}:=\left\{\xi_{n, k}\right\}$ with the normalization $\left|1-\xi_{n, k}\right| \leqslant\left|1-\xi_{n, k+1}\right|, k=1, \ldots$. From Theorem 4, we have

$$
\operatorname{dist}\left(P_{n}, 1\right) \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty .
$$

For any positive ε, denote by $t_{n}(\varepsilon)$ the number of the zeros of $\xi_{n, k}$ which lie in the disk of radius ε, centered at $u=1$. In the present paper we prove

Theorem 5. Under the conditions of Theorem 4, for for any ε, we have

$$
\begin{equation*}
\liminf _{n \rightarrow-\infty} \frac{l_{n}(\varepsilon)}{n}>0 \tag{1.5}
\end{equation*}
$$

For a number $\varepsilon, 0<\varepsilon<1$, we denote by $\mathscr{A}_{n}(\varepsilon)$ the annulus $(1-\varepsilon)\left|a_{n} / a_{n+1}\right|<|z|<(1+\varepsilon)\left|a_{n} / a_{n+1}\right|$. From the last theorem, we have

Corollary 3. If $n=1$ and $c_{1}<0$, then for any $\varepsilon, 0<\varepsilon<1$ the Pade error function $f-\pi_{n, m}$ has, for n large enough, extraneous zeros which are situated in the annulus $\alpha_{n}(\varepsilon)$. Their number $k_{n}(\varepsilon)$ satisfies, as $n \rightarrow \infty$, condition (1.5).

Set

$$
R:=\liminf _{n \rightarrow \infty}\left|a_{n} / a_{n+1}\right|
$$

(Notice that $\rho(f) \geqslant R$.)
Obviously, if $R=\infty$, then f is an entire function. If in addition the conditions of Theorem 4 are fulfilled, then each Padé error function $f-\pi_{n, m}$ has, for n large enough, extraneous zeros and they go to infinity, as $n \rightarrow \infty$, with the speed of $\left|a_{n} / a_{n+1}\right|$.

Further, if $\eta=1$ and $0<R<\infty$, (in this case $\rho(f)>0$), then the set $\{z:|z|<R\}-0$ does not contain, in view of Theorem 3, accumulation points of the zeros of $\left(f-\pi_{n, m}\right)$ as $n \rightarrow \infty$ (recall that each Pade error function has a zero at $z=0$ of order $m+n+1$). If in addition the parameter c_{1} in (1.3) is a negative number, then, in accordance with Theorem 4, the circle $\{z:|z|=R\}$ contains accumulation points of zeros of $\left(f \in \pi_{n, m}\right)(z)$ as $n \rightarrow \infty$. If $R=\lim \sup _{n \rightarrow \infty}\left|a_{n} / a_{n+1}\right|$, then $R=\rho(f)$ and all the extraneous zeros of $f-\pi_{n, m}$ tend to the circle $\{z:|z|=R\}$.

Finally, if $\rho(f)=0$, then $z=0$ is an accumulation point of extraneous zeros of $f-\pi_{n, \ldots}$, as $n \rightarrow \infty$.

Important functions to which Theorem 4 may be applied are the exponential function (see [10])

$$
f(z)=\exp z=\sum_{j=0}^{\infty} z^{i} / j!
$$

and the Mittag-Lefler function of order $\lambda, \lambda>0$, (see [4])

$$
f(z)=\sum_{j=0}^{\infty} z^{j / \Gamma(1+j / \lambda), \quad \lambda>0 . . . ~}
$$

The Padé error function for $e^{-=}$has been considered in [6].

2. Preliminaries

Lemma 1. For any n and m, there holds

$$
\frac{a_{n+m}}{a_{n}}=\left(\frac{a_{n+1}}{a_{n}}\right)^{m} \prod_{j=1}^{m-1} \eta_{n+m}^{j}
$$

The proof will be omitted.
Set

$$
D_{n, m}:=\frac{D(n, m)}{a_{n}^{m}}
$$

The following lemma is of essential importance for all the considerations in the present

Lemma 2 (see [7]). Let f be a formal power series, with $a_{j} \neq O$ for j large. Assume that nj has the asymptotic expansion (1.3) with $c_{1} \neq 0$. Then for $m=1,2, \ldots$ we have

$$
\begin{aligned}
D_{n, m}= & \left(-c_{1} / n\right)^{m(m-1 / / 2} \cdot \prod_{j=1}^{m-1} j^{m-j} \\
& \cdot\{1+x(1, m) / n+o(1 / n)\} \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} Q_{n, m}\left(u a_{n} / a_{n+1}\right)=B_{m}(u)
$$

If (1.2) holds for a number η that is not a root of unity of order m then

$$
\lim _{n \rightarrow s} D_{n, m}=\prod_{j=1}^{m-1}\left(1-\eta^{j}\right)^{m-j}
$$

We set

$$
I_{n, j}:=\prod_{l=0}^{j} \eta_{n+1+l}
$$

The next lemma describes the asymptotic behaviour of $l_{n, j}$ as $n \rightarrow \infty$ for j "small". Before presenting it, we introduce for a given function g and a fixed number $p, p \in \mathbf{N}$, the operator

$$
\nabla^{\prime} g(x):=\sum_{i=0}^{n}(-1)^{i}\binom{p}{i} g(x-i)
$$

with

$$
\nabla^{0} f(x):=f(x)
$$

and

$$
\nabla f(x):=\nabla^{\prime} f(x)
$$

Lemma 3 (see [5]). Assume that η_{j} has the asymptotic expansion (1,3) with $\eta=1$ and $c_{1} \neq 0$. Let N be an arbitrary positive integer. Then
(a) for each $j, j+1 \leqslant n / N$ we have as $n \rightarrow \infty$

$$
I_{n, j}=1+\sum_{s=1}^{N}(j+1) \cdot Q_{s} \cdot 1(j) /(n+1)^{s}+M_{N+1}(j, n)
$$

where Q_{s} is a polynomial of degree $\leqslant s$;
(b) for each fixed $p, p=0,1, \ldots$ and for any $j, j+1<(n-p) /(N+2 p)$ the remainder $M_{N+1}(j, n)$ behaves according to

$$
(n+1)^{N+1+p}\left|\nabla^{p} M_{N+1}(j, n)\right| \leqslant \mathscr{C}_{N+1, p}(j+1)^{N+1}
$$

with suitable positive constants $C_{N+1, p}$ which do not depend on n and j.
We notice that

$$
\begin{equation*}
Q_{0}(j)=c_{1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{1}(j)=\left(j c_{1}^{2}-j c_{1}+2 c_{2}\right) / 2 \tag{2.2}
\end{equation*}
$$

(In what follows, we shall denote by $C_{a, b} \ldots$ and $C(\ldots)$ positive constants that do not depend on n.)

3. Proofs of the Results

Proof of Theorem 1. Applying Lemma 1 to the normalized error function $W_{n}(u)$, we easily get

$$
W_{n}(u)=1+\sum_{j=1}^{\infty} d_{n, j} u^{j}
$$

where

$$
\begin{equation*}
d_{n, j}:=\prod_{l=1}^{j} \eta_{n+j+1-l}^{l} \tag{3.1}
\end{equation*}
$$

First, we notice that under condition (1.2), for any fixed positive integer k there holds

$$
\begin{equation*}
1+\sum_{j=1}^{k} d_{n, j} u^{j} \rightarrow \sum_{j=0}^{k} \eta_{\mu(j+1) / 2} z^{j} \quad \text { as } \quad n \rightarrow \infty . \tag{3.2}
\end{equation*}
$$

We first consider case (i).
Suppose that $|\eta|<1$. Condition (1.2) ensures the existence of a positive number δ with

$$
\begin{equation*}
|\eta|<1-\delta \tag{3.3}
\end{equation*}
$$

Let ε and R be arbitrarily fixed positive numbers. Obviously, there is an integer k such that

$$
\begin{equation*}
R(1-\delta)^{(k+1) / 2} \leqslant 1 / 2 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
(1 / 2)^{k}<\varepsilon / 2 \tag{3.5}
\end{equation*}
$$

We rewrite $W_{n}(u)$ as follows:

$$
W_{n}(u)=1+\sum_{j=1}^{k-1} d_{n, j} u^{j}+\sum_{j=k}^{\infty} d_{n, j} u^{j}:=W_{n, 1, k}(u)+W_{n, 2, k}(u)
$$

From (3.3), we have for every n large enough ($n>n_{j}$) the inequality

$$
\left|d_{n, j}\right| \leqslant(1-\delta)^{j^{(j+1 / 1 / 2}} .
$$

From the last inequality, we get for $n>n_{\delta}$

$$
\left\|W_{n, 2, k}(u)\right\|_{|u| \leqslant R} \leqslant\left(R(\mathbf{I}-\delta)^{(k+1 / 2}\right)^{k} \cdot \sum_{l=0}^{\infty} R^{\prime}(1-\delta)^{(l 2+h(l \mid+2 k) \| / 2}
$$

Making now use of (3.4) and (3.5), for every $n>n_{d}$ we obtain

$$
\left\|W_{n, 2, k}(u)\right\|_{|x| \leqslant R}<\varepsilon .
$$

Together with (3.2), this inequality yields statement (i) of Theorem 1.
Assume now that the conditions of case (ii) hold; then for every n large enough ($n>n_{o}$) we have

$$
\left|d_{n, j}\right| \leqslant 1 .
$$

Repeating now the previous considerations, we come to statement (ii).

Proof of Theorem 2. From the equality (see [2])

$$
\left(\pi_{n, k}-\pi_{n, k+1}\right)(z)=(-1)^{k+1} \frac{\left.z^{n+k+1} D(n+1), k+1\right)}{\left(Q_{n, k} Q_{n, k+1}\right)(z) D(n, k)}
$$

we get

$$
\begin{aligned}
\left(f-\pi_{n, n}\right)(z)= & \left(f-S_{n}\right)(z)+\sum_{k=0}^{m}\left(\pi_{n, k}-\pi_{n, k+1}\right)(z) \\
= & \left(f-S_{n}\right)(z)+\sum_{k=0}^{m}(-1)^{k+1} \\
& \cdot \frac{D(n+1, k+1)}{D(n, k)} \cdot \frac{z^{n+k+1}}{Q_{n, k}(z) Q_{n, k+1}(z)}
\end{aligned}
$$

so that

$$
e_{n, m}(u)=W_{n}(u)+\sum_{k=0}^{m} \frac{(-1)^{k+1} u^{k} D_{n+1, k+1}}{D_{n, k} \cdot\left(Q_{n, k} Q_{n, k+1}\right)\left(u a_{n} / a_{n+1}\right)} .
$$

The statement of Theorem 2 follows now from Lemma 2 and from Theorem 1 .

Proof of Theorem 3. Set

$$
Q_{n, m}=\sum_{k=0}^{m} q_{k, n \cdot m} z^{m}
$$

(recall that $q_{m, n, m}=1$). Completing technical transformations we rewrite $E_{n, m}$ as

$$
\begin{equation*}
E_{n, m}(u)=\frac{1+\sum_{j=1}^{\infty} d_{n, j} F_{j, n, n} u^{\prime}}{Q_{n, m}\left(u a_{n} / a_{n+1}\right)} \tag{4.1}
\end{equation*}
$$

In the last formula

$$
\begin{align*}
F_{f, n, m}= & (-1)^{m} \frac{D_{n, m}}{D_{n+1, m+1}} \cdot \sum_{k=0}^{m} \frac{a_{n}^{m, k}}{a_{n+1}^{m-k}} \cdot q_{k, n, m} \\
& \cdot \prod_{l=1}^{k} \eta_{n+k+j+1-1}^{l} \cdot \prod_{t=1}^{j} \eta_{n+j+1}^{k}, l \tag{4.2}
\end{align*}
$$

Indeed, from the definition of Pade approximants we have

$$
\frac{\left(f \cdot Q_{n, m}-P_{n, m}\right)\left(u a_{n} / a_{n+1}\right)}{\left(u a_{n} /\left(a_{n+1}\right)^{n+m+1}\right.}=\sum_{j=0}^{\infty}\left(u a_{n} / a_{n+1}\right)^{\prime} \sum_{k=0}^{m} a_{n+k+j+1} q_{k, n, m}
$$

Applying now Lemma I, we easily come to (4.1).
From Sylvester's identity (see [2]), there results the recurrence formulas

$$
\begin{aligned}
& q_{k, n, m}=q_{k} \quad 1, n, m-1-\tilde{D}(n, m) q_{k, n} \quad 1, m \quad 1 \\
& q_{0, n, m}=-\tilde{D}(n, m) q_{0, n-1, m}
\end{aligned}
$$

where

$$
\widetilde{D}(n, m):=D(n-1, m-1) D(n+1, m) / D(n, m-1) D(n, m)
$$

Making use of these formulas, we obtain

$$
\begin{align*}
F_{j, n, m}:= & \frac{-D(n, m) D(n+1, m)}{D(n+1, m+1) D(n, m-1)} \cdot \frac{a_{n+1}}{a_{n}} \\
& \cdot\left\{F_{j+1, n, m, 1 \cdot I_{n, j}-F_{j+1, n-1, m}}\right\} . \tag{4.3}
\end{align*}
$$

The next step in the proof is to establish by induction on m that
(a) for every $N \in \mathbf{N}$ and for $j+m<n /(N+3 m-1)$ the following expansion is valid as $n \rightarrow \infty$

$$
\begin{equation*}
F_{i . n . m}=\prod_{l=1}^{m} \frac{(j+l)}{m!}+\sum_{s=1}^{N} \frac{\sum_{s, m}(j)}{(n+1)^{s}}+I_{N+1 . m}(j . n) . \tag{4.4}
\end{equation*}
$$

where $\mathscr{P}_{s, m}(j)$ is a polynomial of degree not exceeding $m+s$;
(b) for every j, satisfying $j+m<n /(N+1+m+2(p+m-1))$ there holds, as $n \rightarrow \infty$,

$$
\begin{equation*}
\left|(n+1)^{N+p+1} \cdot \nabla^{p} \cdot\right|_{N+1}, \ldots(j, n) \mid<C_{m}, N+1, p \cdot j^{N+m+1} \tag{4.5}
\end{equation*}
$$

with $C_{m, N+1 . p}$ a positive constant not depending on n and on j;
(c) for numbers j with $j+m \geqslant n / 3 m$ we have for $n \rightarrow \infty$

$$
\begin{equation*}
\left|F_{j, n, m}\right| \leqslant \mathbf{c}_{m} \cdot j^{m} . \tag{4.6}
\end{equation*}
$$

Check the hypothesis for $m=1$. The direct calculation gives

$$
\begin{equation*}
F_{j, n, 1}=\frac{I_{n, j}-1}{\eta_{n+1}-1} . \tag{4.7}
\end{equation*}
$$

In accordance with (1.3), we may write for n sufficiently large

$$
1 /\left(n_{n+1}-1\right)=\left\{1+\sum_{i=1}^{N} g_{i} /(n+1)^{i}+o\left(1 / n^{N}\right)\right\} \cdot(n+1) / e_{1}
$$

with

$$
g_{1}=-c_{2} / c_{1}
$$

Using Lemma 3, (2.1) and (4.7), we get for $F_{j, n, 1}$

$$
\begin{aligned}
F_{j, n, 1}= & \left\{(j+1)\left\{1+\sum_{s=1}^{N} \frac{Q_{s}(j)}{c_{1}(n+1)^{*}}\right\}+\frac{(n+1) \cdot M_{N+2}(j, n)}{c_{1}}\right\} \\
& \cdot\left\{1+\sum_{i=1}^{N+1} \frac{g_{i}}{(n+1)^{i}}+o\left(1 / n^{N}\right)\right\}
\end{aligned}
$$

The last formula can be rewritten as

$$
F_{j, n, 1}=j+1+\sum_{s=1}^{N} \mathscr{P}_{s, 1}(j) /(n+1)^{s}+\mathscr{V}_{N+1,1}(j, n) .
$$

We easily verify that $\operatorname{deg} \mathscr{P}_{s .1}(j) \leqslant s+1$. Further, we see that $V_{N+1.1}(j, n)$ depends on $(n+1) \cdot M_{N+2}(j, n)$. Let now $p \in \mathbf{N}$ be fixed. Since for $j+1<$ $(n-p) /(N+1+2 p)$ the remainder $M_{N+2}(j, n)$ behaves in the way described by Lemma 3, then $\mathcal{N}_{N+1,1}(j, n)$ satisfies as $n \rightarrow \infty$ the induction hypothesis (4.5) for numbers j with $j+1<n /(N+2+2 p)$ and $C_{1, N+1, p}$ being a suitable positive constant.

Also, for $j+1 \geqslant n / 3,(4.7)$ implies (4.6) for $m=1$ with a suitable positive constant.

Thus the assertion is proved for $m=1$.
Set now

$$
\mathscr{C}_{n, m}:=\frac{-D(n, m) D(n+1, m)}{D(n+1, m+1) D(n, m-1)} \cdot \frac{a_{n+1}}{a_{n}}
$$

Before proving the induction hypothesis for an arbitrary number m, we consider the asymptotic behaviour of $\mathscr{D}_{n, m}$ as $n \rightarrow \infty$ and m is fixed. From Lemma 2, there follows for every $N \geqslant 1$ the representation

$$
\mathscr{D}_{n, m}=\frac{n+1}{m c_{1}} \cdot\left\{1+\sum_{i=1}^{N} \frac{\alpha_{i, m}}{(n+1)^{i}}+o\left(1 /(n+1)^{N}\right)\right\} . \quad \text { as } \quad n \rightarrow \infty .
$$

Suppose (4.4)-(4.6) are valid for some m. Let $N \in \mathbf{N}$ be fixed. Then in view of (4.3) we may write

$$
\begin{aligned}
F_{j, n, m+1}= & \frac{n+1}{(m+1) c_{1}}\left\{1+\sum_{i=1}^{N} \frac{x_{i, m+1}}{(n+1)^{\prime}}+o\left(1 /(n+1)^{N}\right)\right\} \\
& \cdot\left\{\left\{1+\sum_{s=1}^{N+1}(j+1) \cdot Q_{s, 1}(j) /(n+1)^{s}+M_{N+2}(j, n)\right\}\right. \\
& \cdot\left\{\prod_{l=2}^{m+1} \frac{j+1}{m!}+\sum_{s=1}^{N+1} \frac{\mathscr{P}_{s, m}(j+1)}{(n+1)^{N}}+V_{N+2, m}(j+1, n)\right\} \\
& \left.-\left\{\prod_{l=2}^{m+1} \frac{j+l}{m!}+\sum_{s=1}^{N+1} \frac{\mathscr{P}_{s, m}(j+1)}{n^{s}}+\mathscr{N}_{N+2, m}(j+1, n-1)\right\}\right\}
\end{aligned}
$$

Using (2.1) and (2.2), we rewrite this formula in the required form, namely,

$$
F_{j, n, m+1}=\prod_{l=1}^{m+1} \frac{(j+l)}{(m+1)!}+\sum_{s=1}^{N} \mathcal{P}_{s, n+1}(j) /(n+1)^{s}+1_{N+1, m+1}(j, n)
$$

where obviously each polynomial $\mathscr{P}_{s m+1}$ is of degree not exceeding $m+s+1$. Further, we see that the remainder $\mathscr{N}_{N+1, m+1}(j, n)$ depends on the difference $(n+1) \cdot\left\{\cdot V_{N+2, m}(j+1, n)-V_{N+2, m}(j+1, n-1)\right\}=$ $(n+1) \cdot \nabla \cdot V_{N+2, m}(j+1, n)$. From the definition of ∇^{p} we easily set

$$
\begin{aligned}
& \nabla^{p}\left\{(n+1) \cdot \nabla \cdot V_{N+2, m}(j+1, n)\right\} \\
& \quad=(n+1) \cdot \nabla^{p+1} \cdot V_{N+2, m}(j+1, n)-p \cdot \nabla^{p} V_{N+2, m}(j+1, n-1)
\end{aligned}
$$

Therefore, for $j+1+m<\mu_{n, p}:=\min (n /(N+2+m+2(p+m)), \quad(n-1) /$ $(N+2+m+2(p+m-1))$) the term $\nabla^{r} \cdot V_{N+1, m+1}(j, n)$ behaves in the way described by (4.6). The observation that $\mu_{n_{,},}=n /(N+2+m+$ $2(p+m)$) for n large establishes (4.5) for $m+1$.

Further, for $j+1+m \geqslant n /(3 m+3)$ we easily check that

$$
\left|F_{j, n, m+1}\right| \leqslant \mathbf{c}_{m+1} j^{m+1}
$$

This proves the induction hypothesis (4.4)-(4.6) for $m+1$.
We notice for $j+m<n / 3 m$ the validity of the inequalities

$$
\begin{equation*}
F_{j, n, m}=\prod_{l=1}^{m} \frac{(j+l)}{m!}+l_{1 . m}(j, n) \tag{4.8}
\end{equation*}
$$

with

$$
\begin{equation*}
\left|n \cdot \mathscr{N}_{1, m}(j, n)\right|<\mathscr{C}_{1, m}(j, n) \mid<\mathscr{C}_{m} \cdot j^{m+1} \quad \text { as } n \rightarrow \infty . \tag{4.9}
\end{equation*}
$$

We now are in position to prove Theorem 2.

Set, for any $k \in \mathbf{N}$

$$
e_{n, m, k}(u):=\sum_{j=0}^{k-1} d_{n, j} F_{j, n, m} u^{j}
$$

and

$$
\delta_{n, m, k}(u):=\sum_{j=k}^{\infty} d_{n, j} F_{f, \ldots, \ldots, u^{j} .}
$$

From (4.1), we have

$$
\begin{equation*}
E_{n, m}(u)=\frac{e_{n, m, k}(u)+\mathscr{E}_{n, m, k}(u)}{Q_{n, m}\left(u a_{n} / a_{n+1}\right)} \tag{4.1}
\end{equation*}
$$

Let δ be a fixed positive number. For $n \in \mathbf{N}$ sufficiently large we write

$$
\mathscr{E}_{n, m, k}\left(e^{s}\right):=\left\{\sum_{j=k}^{j<n / 3 m-m}+\sum_{j \geqslant n / 3 m-m}^{s}\right\} d_{n, j} F_{j, \ldots, m} e^{-\delta j} .
$$

Applying (4.4)-(4.6), we establish that

$$
\left\|\mathscr{E}_{n, m, k}\right\|_{\mid \mu 1 \leqslant c^{-j} \leqslant} \leqslant C\left(e^{-k \delta}+e^{-m \delta}\right)
$$

where C is a constant independent of k and n. On the other hand, for any fixed j we have

$$
F_{\gamma, n, m} \rightarrow \prod_{l=1}^{m} \frac{(j+l)}{m!} \quad \text { as } \quad n \rightarrow \infty
$$

so that, for any fixed k we may write

$$
e_{n, m, k}(u) \rightarrow \sum_{j=0}^{k} \prod_{l=1}^{\prime \prime \prime} \frac{(j+l)}{m!} \quad \text { as } \quad n \rightarrow \infty
$$

Hence the statement of Theorem 3 follows easily. Indeed,

$$
\sum_{j=0}^{\infty} u^{j} \prod_{l=1}^{m}(j+l) / m!=\frac{1}{m!} \cdot\left(u^{m}(1-u)^{1}\right)^{(m)}=(1-u)^{-m-1}
$$

This result, (4.1)', and Lemma 2 establish the statement of Theorem 3.
Proof of Theorem 4. In our further considerations, we shall deal with the functions $\mathscr{E}_{n, m}(u):=\mathscr{E}_{n, m, 0}(u)$. Recall that m is fixed and $n \rightarrow \infty$. In accordance with (3.1) we have

$$
d_{n, j}:=\prod_{l=1}^{j} \eta_{n+j+1-l}^{l} \quad \text { as } \quad n \rightarrow \infty
$$

Arguing in the same way as in [5], we shall establish that for every δ small enough there exists a positive integer n_{δ} such that for any $n>n_{\delta}$ the inequality

$$
\begin{equation*}
\operatorname{Re} \mathscr{E}_{n, \ldots}\left(e^{2 \delta}\right) \geqslant C(0) \cdot e^{n \cdot x(\delta)} \tag{5.1}
\end{equation*}
$$

is valid, where

$$
\alpha(\delta):=\delta^{2} /\left(-c_{1}+\delta\right)
$$

and $C(0)$ is a positive constant, independent of n and δ.
For convenience, we shall use the notation $c_{1}:=-2 d_{1}$. In the conditions of Theorem 4, $d_{1}>0$. In [5], the validity of the following inequalities for each n large ($n>n_{0}$) was established:

$$
\begin{equation*}
\left|\eta_{n}\right| \leqslant 1-d_{1} / n \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\eta_{n}\right| \leqslant\left|\eta_{n+1}\right| \tag{5.3}
\end{equation*}
$$

The two last iunequalities lead to

$$
\begin{equation*}
\left|d_{n, j}\right| \leqslant\left(\left|\eta_{n+j}\right|\right)^{j 1 /+1 / 2} \leqslant\left(1-d_{1} /(n+j)\right)^{j i+1 / / 2} \tag{5.4}
\end{equation*}
$$

This inequality means that each function $\mathscr{E}_{n, m}(u)$ admits an analytic continuation in the disk $\left\{u,|u|<e^{d_{1} / 2}\right\}$.

Let ε be a fixed positive number, $\varepsilon<1$.
In our further considerations, we will assume that for $n>n_{0}$ the inequalities

$$
\begin{equation*}
\left(n / d_{1}\right)\left|\log \left(\mathrm{I}-d_{1} / n\right)\right| \geqslant \mathrm{I}-\varepsilon \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Im} \eta_{n}\right| \leqslant C(1) \cdot \operatorname{Re} \eta_{n} / n^{2} \tag{5.6}
\end{equation*}
$$

are fulfilled for a suitable positive constant $C(1)$. Without loss of generality, we may assume that $C(1)>1$. In accordance with Theorem 2, (4.8), (4.9) and (4.6), we may also write

$$
\begin{equation*}
\left.\left|\cdot V_{1, m}(j, n)\right| \leqslant C(1)\right) \cdot j^{m+1} / n \tag{5.7}
\end{equation*}
$$

for $j+m<n / 3 m$ and

$$
\begin{equation*}
\left.\left|F_{j, n, m}\right| \leqslant C(1)\right) j^{m} \tag{5.8}
\end{equation*}
$$

otherwise. Select a positive number δ_{0} such that

$$
\begin{equation*}
0<6 C(1) m!\delta_{0} /\left(d_{1}(1-\varepsilon)-6 \delta_{0}\right)<1 / 3 \tag{5.9}
\end{equation*}
$$

and set

$$
d\left(\varepsilon, \delta_{0}\right):=d_{1}(1-\varepsilon)-6 \delta_{0}
$$

In what follows, we shall assume that each $n>n_{0}$ satisfies the inequality

$$
\begin{equation*}
\operatorname{Re} \eta_{n} \geqslant 1-\left(2 d_{1}+\delta_{0}\right) / n>0 \tag{5.10}
\end{equation*}
$$

Let δ be a positive number such that $\delta<\delta_{0}$. Obviously, there is an integer $n_{\delta}, n_{j}>n_{0}$, such that for any $n \geqslant n_{\delta}$ the inequalities

$$
\begin{equation*}
\operatorname{Re} \eta_{n} \geqslant 1-\left(2 d_{1}+\delta\right) / n \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(n+1)}{2 d_{1}+\delta} \cdot\left|\log \left(1-\frac{2 d_{1}+\delta}{n+1}\right)\right|<2 \tag{5.12}
\end{equation*}
$$

are fulfilled. Set $j_{1}(\delta):=6 \delta / d(\varepsilon, \delta)$. For $j>j_{1}(\delta) \cdot n$ we obtain, in accordance with (5.4) and (5.5) that

$$
\left|d_{n, j}\right| \leqslant e^{-3 j /}
$$

which implies with respect to (5.9), (5.7) and to the choice of δ the inequality

$$
\begin{equation*}
\left\|\sum_{j=j_{1}(\delta) n}^{\infty} d_{n, j} F_{j, n, m} u^{j}\right\|_{|u|=e^{2,}}^{\|} \leqslant C\left(\delta_{0}\right) e^{-\partial j_{1}(\delta i n} \tag{5.13}
\end{equation*}
$$

On the other hand, we have for $j+1 \leqslant j_{1}(\delta) \cdot n$ by (5.3), (5.6) and the choice of δ

$$
\left|\frac{d_{j, n}}{\prod_{l=1}^{j}\left(\operatorname{Re} \eta_{n+j}+1-l\right)^{1}}-1\right| \leqslant C(2) \cdot \delta^{2},
$$

where $C(2)=18 C(1) / d_{\varepsilon, \delta}^{2}$. Notice that the choice of δ ensures that $C(2) \cdot \delta_{0}^{2}<1 / 2$.

Further, the last inequality with respect to $d_{n, j}$ leads to

$$
\begin{aligned}
& \left(1-C(2) \delta^{2}\right) \prod_{l=1}^{j}\left(\operatorname{Re} \eta_{n+j+1-l}\right)^{l} \leqslant \operatorname{Re} d_{n, j} \\
& \leqslant\left(1+C(2) \delta^{2}\right) \prod_{l=1}^{j}\left(\operatorname{Re} \eta_{n+j+i-l}\right)^{l}
\end{aligned}
$$

and

$$
\left|\operatorname{Im} d_{n, j}\right| \leqslant C(2) \delta^{2} \prod_{l=1}^{j}\left(\operatorname{Re} \eta_{n+i+1, l}\right)^{\prime}
$$

Next, we assume without loss of generality that the integer n_{j} satisfies the additional condition

$$
\begin{equation*}
j_{1}(\delta) \cdot n_{\delta}+m-1<n_{\delta} / 3 m \tag{5.14}
\end{equation*}
$$

Using now (4.8), (5.7), and the last inequalities, we get

$$
\operatorname{Re} F_{j, n, m} \cdot \operatorname{Re} d_{n, j}-\operatorname{Im} F_{j, n, m} \cdot \operatorname{Im} d_{n, j} \geqslant Q_{s_{0}}(j) \cdot \prod_{l=1}^{j}\left(\operatorname{Re} \eta_{n+j+1-l}\right)^{\prime}
$$

with

$$
\begin{aligned}
Q_{\delta_{0}}(j):= & \left(1-C(2) \delta_{0}^{2}\right) \cdot\left(\prod_{i=1}^{m}(j+1) / m!-C(1) j^{m} \cdot \frac{\delta_{0}}{d\left(\varepsilon, \delta_{0}\right)}\right) \\
& -C(2) \delta_{0}^{2} C(1) j^{n} \cdot \frac{6 \delta_{0}}{d\left(\varepsilon, \delta_{0}\right)}
\end{aligned}
$$

As we see, $Q_{\delta_{4}}$ is a polynomial of degree exactly m and all its coefficients are positive. Further, in view of (5.10) and to the choice of δ_{0} we may write

$$
\begin{equation*}
\operatorname{Re} F_{j, n, m} \cdot \operatorname{Re} d_{n, j}-\operatorname{Im} F_{j, n, m} \cdot \operatorname{Im} d_{n, j}>0 \tag{5.15}
\end{equation*}
$$

Recall that the last inequality is valid for $n>n_{\delta}$ (compare with (5.14)) for any j with $j+1<j_{1}(\delta) \cdot n$. Set now $j_{2}(\delta):=\delta /\left(2 d_{1}+\delta\right)$ and consider $\theta_{n, m, \delta}\left(e^{2 \delta}\right):=\sum_{j=0}^{\left.j_{j}(\delta) n+n\right)-1} d_{n, j} F_{j, n, m}\left(e^{2 \delta j}\right)$. From (5.12) we get

$$
j+1<\frac{2 \delta}{\left|\log \left(1-\frac{2 d_{1}+\delta}{n+1}\right)\right|}
$$

which immediately implies

$$
\left(1-\frac{2 d_{1}+\delta}{n+1}\right)^{\mu(i+1 / 2}>e^{--\lambda j)}
$$

Taking into account (5.11), we conclude from this inequality that

$$
\prod_{l=1}^{j}\left(\operatorname{Re} \eta_{n+i+1-l}\right)^{\prime}>e^{-s i}
$$

Recall that the last inequality holds for $j<j_{2}(\delta)(n+1)-1$ and for n "large". Now, combining (4.13), (5.15), and the last result, we get

$$
\operatorname{Re} \mathscr{E}_{n, m}\left(e^{2 j}\right)>\sum_{j=0}^{j_{2}(\partial n n+11} Q_{\delta_{0}}(j) e^{\partial j}-C\left(\delta_{0}\right) e^{\left(\pi(\delta)^{2} n / d e d\right)}
$$

Inequality (5.1) results from here.
Now, it easily follows that the point $u=1$ attracts, as $n \rightarrow \infty$, at least one zero of the sequence $E_{n, m}(u)$. Before presenting the proof, we introduce the notation $U_{u}(r)$; that is the open disk of radius r, centered at the point a; further, we set $\Gamma_{a}(r):=\partial U_{a}(r)$.

Assume now the contrary that there is a disk $U_{1}\left(e^{--\mu}\right), 1+e^{-\rho}<e^{d_{1} / 2}$ such that $\mathscr{\delta}_{n, m}(u) \# 0$ there. Set $\tau:=\log \left(1+e^{\rho}\right)$. Let θ be an arbitrary positive number with $1+e$ " $\cdot e^{\prime \prime}<e^{d_{1 / 2}}$ and $0<1-e^{\prime \prime} \cdot e^{\prime \prime}$. Set $\tau(\theta):=$ $\log \left(1+c^{p+\theta}\right)$. Without loss of generality we may assume that the number $\tau(\theta) / 2$ satisfies inequality (5.9). In the notations of the preceding considerations, we introduce for n "large" in the previous sense that series A_{n} and B_{n} as follows:

$$
A_{n}(u):=\sum_{j+1>j_{1}(t(1) / 21, n}^{\infty} d_{n, j} F_{j, n, m} u^{j}
$$

and

$$
B_{n}(u):=\sum_{j=0}^{j_{1}(\tau(\theta) / 2) \cdot n-1} d_{n, j} F_{j, \ldots, \ldots} u^{j}
$$

Repeating the same considerations as above (see (5.13)), we establish that

$$
\begin{equation*}
\left\|A_{n}\right\|_{C_{n}\left(c^{x}(\theta)\right)} \leqslant C(\tau(\theta)) e^{\left.-n \tau(\theta) h_{1} t \tau(\theta) / 2\right)} \tag{5.16}
\end{equation*}
$$

On the other hand, for B_{n} we easily get

$$
\begin{equation*}
\left\|B_{n}\right\|_{U_{v}\left(e^{\tau}(\theta)\right)} \leqslant C(\tau(\theta)) e^{\mu \tau(\theta) j_{1}(\tau(\theta) / 2)} \tag{5.17}
\end{equation*}
$$

Set now $V:=U_{0}(1) \cup U_{1}\left(e^{-p}\right)$ and let X_{n} be the regular branch of $\left(\mathscr{E}_{n, m}\right)(u)^{1 / n}$ determined by the condition $X_{n}(0)=1$. Inequalities (5.16) and (5.17) ensure the uniform boundedness of the sequence $\left\{X_{n}\right\}$ in V. By Theorem 2 and by the theorem of uniqueness for holomorphic functions,

$$
X_{n} \rightarrow 1
$$

uniformly inside $U_{0}(1)$ and therefore, inside V, as well. On the other hand, by (5.1) for any $\delta<\tau$ the inequality $X_{n}\left(e^{\delta}\right) \geqslant \exp n\left(\delta^{2} / 2\left(4 d_{1}+\delta\right)\right)$ is valid
for each n large enough. This contradicts with the last result about the convergence of the sequence $X_{n}(u)$. The contradiction we obtained establishes the statement of Theorem 5 .

Proof of Theorem 5. Preserving the notations of Theorem 4, denote now by $\xi_{n, k}, k=1, \ldots, t_{n}$ the zeros of $\varepsilon_{n, m}(u)$ in $U_{1}\left(e^{\prime \prime}\right)$. By Theorem 3, $i_{n} \geqslant 1$.

We shall show that

$$
\liminf i_{n} n>0 .
$$

Suppose to the contrary that there is an infinite sequence $A, A \subset \mathbf{N}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow x_{n \in A}} i_{n} n=0 . \tag{6.1}
\end{equation*}
$$

Set

$$
q_{n}(u):=\prod_{k=1}^{t_{n}}\left(1-\frac{u}{\xi_{n, k}}\right)
$$

and

$$
\chi_{n}(u):=\left\{\frac{\mathscr{C}_{n, m}(u)}{q_{n}(u)}\right\}^{1 / n},
$$

with $\chi_{n}(0)=1$.
Consider the sequence $\left\{\chi_{n}\right\}_{n \in A}$.
For $q_{n}(u)$ we have

$$
\min _{\left.u \in \zeta_{i, 1}, e^{(u)}\right)}\left|q_{n}(u)\right| \geqslant\left\{\frac{e^{\prime \prime}\left(e^{\theta}-1\right)}{\left(1+e^{\prime \prime}\right)}\right\}^{\prime \prime}
$$

Combine now the last equality, (5.16) and (5.17). By virtue of (6.1) and by the maximum principle for holomorphic functions, the sequence $\left\{\chi_{n}\right\}_{n \in A}$ is uniformly bounded on V. (recall that accordingly to the geometric construction and to the choice of $\theta, V \subset U_{0}(\tau(\theta))$.

Select now a positive number r with $r<1-e^{-p} e^{\theta}$. For $u \in U_{0}(r)$, we obviously have

$$
\left\{\frac{\left(1-e^{r}+r\right)}{\left(1-e^{-\rho}\right.}\right\}^{i_{n}} \geqslant\left|q_{n}(u)\right| \geqslant\left\{\frac{\left(1-e^{\prime \prime}-r\right)}{\left(1-e^{\prime \prime}\right)}\right\}^{\prime_{n}} .
$$

Therefore, in view of Theorem 4 and of (6.2), we may write

$$
\chi_{n} \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty, \quad n \in A
$$

on the disk $U_{0}(r)$. Therefore

$$
\begin{equation*}
\chi_{n} \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty, \quad n \in A \tag{6.2}
\end{equation*}
$$

uniformly inside the domain V.
Select a positive number ε_{0} such that

$$
\varepsilon_{0}<\frac{e^{-\beta}}{4}
$$

Set $\Omega\left(\varepsilon_{0}\right):=\bigcup_{n \in A} \bigcup_{k=1}^{t_{n}}\left\{u,\left|u-\xi_{n, k}\right|<\varepsilon_{0} / I_{n} \cdot n^{2}\right\}$. Obviously,

$$
\begin{equation*}
\operatorname{mes}_{1}\left(\Omega\left(\varepsilon_{0}\right)\right)<\varepsilon_{0}<\frac{e^{-\rho}}{4} \tag{6.3}
\end{equation*}
$$

Further, for $u \in U_{1}\left(e^{\rho}\right)-\Omega\left(\varepsilon_{0}\right)$ we have

$$
\left\{\frac{2 e^{-\beta}}{\left(1-e^{-p}\right)}\right\}^{t_{n}} \geqslant\left|q_{n}(u)\right|
$$

The choice of ε_{0} and (6.3) ensures the existence of a positive number δ, $\delta<\tau$ such that $e^{, j} \in U_{1}\left(e^{p}\right)-\Omega\left(\varepsilon_{0}\right)$. Applying (5.1) to that number δ, using the last estimate and (6.1), we conclude that $\chi_{n}\left(e^{\delta}\right)>e^{n \delta^{2} / 2\left(4 d_{1}+\delta\right)}$ for n large enough. This inequality forms a contradiction with (6.2). Consequently, (1.5) is valid and Theorem 5 is true.

References

1. R. Askev and M. Ismall, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc 49 (1984), 300.
2. G. A. Baker, "Essentials of Padé Approximants," Academic Press, New York, 1975.
3. G. A. Baklr Jr. and P. Graves-Morris, Padé approximants. 1. Basic theory, in "Encyclopedia of Mathematics and Its Applications," Cambridge Univ. Press, Cambridge, UK, 1981.
4. A. Edrel, E. B. Saff, anit R.S. Varga, "Zeros of Sections of Power Series," Lecture Notes of Mathematics, Vol. 1002, Springer-Verlag, Berlin, 1983.
5. R. K. Kovacheva and E. B. Saff, Zeros of Padé approximants for entire functions with smooth Maclaurin coefficients, J. Approx. Theory 79 (1994), 347-384.
6. J. Lam and K. W. Chung, Error bounds for Pade approximants of $e^{-\varepsilon}$ on the real axis, J. Approx. Theory 69 (1992), 222230.
7. D. S. Lubinsky, Uniform convergence of rows of Pade table for functions with smooth Maclaurin coefficients, Constr. Approx. 3 (1987), 307 330.
8. D. S. Lubinsky and E. B. Saff, Convergence of Pade approximants of partial theta function and Rogers-Szegö polynomials, Constr. Approx. 3 (1987), 331361.
9. O. Perron, "Die Lehre von den Kettenbrüchen," 3rd ed., Chelsea, New York, 1957.
10. E. B. Saff and R.S. Varga, On zeros and poles of Padé approximants to e^{z}, Numer. Math. 25 (1975). 1.14.
