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We deal with functions f(::):= L,:~() a,,::" whose coefficients satisfy Lubinsky's
smoothness condition, namely, a, + I • a/_ I la; -+ 1) as j -+ Cfe, t) # OC'. In the present
paper, theorems concerning the asymptotic behaviour of the normalized (in an
appropriate way l Pade error functions (f -1!", m) as n -+ 00, m-fixed, are provided.
As a consequence, results concerning the number of the zeros and of their limiting
distribution are deduced. ... 1995 AcademIC Press, Inc

1. INTRODUCTION AND MAIN RESULTS

Let

z

f(:::):= I
i~O

(J.l )

be a function with Qj # 0 for all nonnegative integers j, (j EN) large. We set

I7j:= aj + I' u,_I/a},

The basic assumption throughout the present work is that

'7, -> 17, as j -> CfJ. (1.2 )

This kind of convergence has been introduced and studied by D. Lubinsky
in [7], where important theorems resulting from (1.2) with respect to the
asymptotic of Toeplitz determinants and uniform convergence of the mth
row of the table of classical Pade approximants to f are proved. Therefore,
in what follows, condition (1.2) will be called "Lubinsky's smoothness
condition".
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Let p(f) be the radius of convergence of the power series (1.1). We
notice that under Lubinsky's smoothness condition (/.1) represents an
entire function, if IfII < I; the radius of convergence p(/) is zero, if Iffl > 1.
If 1111 = 1, then (1.1) may have a positive or a zero radius of convergence.

Further, we assume that the numbers ffn tend to 11 smoothly enough,
namely: there exist complex numbers {('i} IX~ t with ('I #- 0 such that for each
N, N EN, N> I, we have the representation

(1.3 )

Introduce the function H,,(:::) with

H" (:::) := L 17 /1 I + I )/2:::/

j~()

It is clear that for IfII < J, H,l (:::) is an entire function. If 1/11 = 1, then H,/(:::)
is holomorphic in the unit disk; in the case when Iffl > I, the radius of
convergence is zero.

Notice that H,,(:::) = h(11:::), where h(:::) is the partial theta function. Its
properties (natural boundary, domains omitting zeros etc.) have been
studied in [8 J.

Let now m be a nonnegative integer. In our further considerations, we
will assume that m is fixed.

Further, we assume that the power series (1.1) does not represent a
rational function with a number of finite poles, not more than m (we write
frlc :?flll )·

For each n, nEN, let n/l. 1II (=nn./I/(/)) be the Pade approximant to the
function f of order (n, m). We set

where Qn./I/(O) = I and both polynomials P".III and Qn,lII do not have a
common divisor.

Let D(n,m)=det{anl+d;.'k~l be Toeplitz's determinant formed from
the Maclaurin coefficients of (1.1). Under our basic assumption concerning
nonrationality of f, it is true that the inequality D(n, m) #- 0 holds for an
infinite sequence of positive integers n (see, for instance, [2J and [3 J).
Denote by A the sequence of those positive integers for which deg Qn. m = m;
as it is known (see [2 J, [3 J) A is infinite (recall that that f ric ·9lim ). For any
nEN the equality nn.m=nkln)."I' where k(n) :=max{k, k~n, kEA} is
valid. For n E A there holds (see [9J)

(f. Qn.m - P',.m)(z) = :::lI+m+ l . (-I r'· D(n + I, m + 1)/D(n, m) + ''',



and
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QIl, m(;:) = 1+ .. , +;:"'. (-1 r' D(n + 1, m)jD(n, m).
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Recalling now the structure of Pade's table corresponding to .r. we
assume without losing the generality that the last formulas hold for every
nE N starting with number no.

In what follows, we shall call the ditTerence f - 1[". m the Pade error func
tion to f of order (n, m).

Recently, the limiting distribution of the zeros of the mth row in Pade's
table for entire functions with "smooth" Maclaurin coefficients was con
sidered (see [5]). As a consequence, the limiting distribution of the zeros
of the sequence of Pade approximants 1[//.", as 11 -+ if,; was characterized.
The goal of the present paper is to explore analogous problems with
respect to the Pade error functions.

Denote by S,,(;:) = s"U;;:) the nth partial sum of the function I(;:);

S,,(;:) := I (l,;:I.

1=0

We notice that SIll;:) ="",0(;:) for every NEN.
The starting point for the investigations is the following unpublished

result by E. B. SatT with describes the limiting behaviour of the ditTerences
f - S// as n -+XJ normalized in an appropriate way.

THEOREM I. Set

J¥,,(u) := (f - S//)(ua,.!a// + I )ja" + I (ua"ja ll + I)" + '.

Assume that (1.2) holds It'ith (i): I'll < I anc/(ii): with I'll = I in a It'ay that
1/1,,\ ~ I fen aUn large enough. Then, respectively,

(i)

( 1.4i)

un!feJrfnly inside in C and

(ii)

(1.4ii)

un!formly inside {u : lui < I}.

As usual, "uniformly inside" a given set M, ME C, means uniform
convergence on compact subsets of M in the uniform norm,
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Let now m be a fixed positive integer. The first result in the present paper
refers to functions (1.I) for those 'I #- I. Following [8], we introduce the
polynomials Bm (u) := Bm (u, q), m EO N fixed, as follows:

B,,(u):= I and for m = 1,2, ...

Bm(u):= Bm_ 1(u) - u· q"'--I . B", __ I (u/q).

When q is not a root of unity, then

B -u _ m ujIl~=I(I-qm+l-k).
m( ) - L III (1- k) ,

i~O k~1 q

furthermore, Bm(u) = (I - u)m, when q = I.
These polynomials are of importance in the investigation of the distribu

tion of the zeros of Pade error functions f - 7Z". m in the case when the
number" in (1.2) is not a root of unity.

For 0 < q < I, the polynomials B", (suitably normalized) are orthogonal
with respect to a nonnegative weight on the unit circle (see [I]), so that
all their zeros lie in {z, Izi ~ I}. For q = I results concerning the distribu
tion of the zeros of the polynomials Bm (u), m = 0, I, ... can be found in [8].

For our goal, we introduce an appropriate normalization of the error
functions. Set

, ._ (f-7Z".m)(ua,,/a,,+I)
l".",.- (I )"+1an + Juan an + J

The following theorem describes the limiting behaviour of the sequence
e". m for m fixed and n --> 00.

THEOREM 2. Assume that (1.2) holds for a number" with ,,#- 00 in the
way that (i) '7 is not a root of unity and (ii) '7 is a root of unity o.lorder m"
and sati4ies ( 1.3). Then (i) il)r any m and (ii) for any m, m ~mo - I there
holds

as n --> oc

uniformly inside the domains described by Theorem I ), excluding .cJ&, where ~
is the set of the zeros of the polynomials Bk = Bdz, ,,), k = I, ... , m.

Set t5(m, ,,) := min { \::1 : Bm(z, ,,) = 0, k = I, ..., m}. From Theorem 2, we get

COROLLARY I. With the assumptions of Theorem 2, for any e, 0 < e < 1,
the Pade error function f - 7Zn• m has for n sufficiently large not more than a

finite number o.lzeros in 0 < Izi <J(m, '7)( I-e) ·la"la,,+ II·
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The next results characterize the limiting behaviour of the error functions
as n --+ x, m-fixed, in the case when the numbers '1" tend to 'I = 1 in the
way described by ( 1.3).

Denote by E.,.",(u) the error function f-n".1II normalized as follows:

E ()'= (f- n". lII)(ua,./a" + I)
".", u. (ua,,/a"+I)"+"'+1.(-1)"'.D(n+l,m+1)/D(n,m)

In the present paper, we prove

THEOREM 3. Let mEN he fixed and f ¢ '~m' Assume that ai 0/ 0 If)r j
large; assume, further that 'I" admits the expansion (1.3) with 'I = I, ('\ 0/ 0
alld 1'1,,1 :( 1 .If}r all 11 EN sufficiently large.

Then

E.,.III(U) --+ (1 - u)

uniformly inside {u : lui < I}.

From Theorem 3, we have

2m I as n --+ Cf)

COROLLAR Y 2. With the assumptions oj' Theorem 3, for each fi'xed mEN
and any e, 0 < e < I, the Pade error fUllction (f - 1t". 11I)(:) has no :eros ill
0< 1:1 < la"/a,, + II . (1 - e) .lor 11 su.lflciently large.

Recall that under our assumptions each Pade error function of order
(lI,m) has a zero at :=0 of order m+n+ I.

Further, we consider the special case when 'I = 1 and the first coefficient
C I in (1.3) is a real negative number. Under this additional condition, the
next result provides information about the existence of "extraneous" zeros
of the normalized Pade error functions E".III(u) and about the limiting
behaviour of those zeros as n -> Cf:J, as well.

THEOREM 4. II 'I = 1 and c\ < 0, thell u = 1 is a limit point (~I :eros of

{E."m(U)} ,;~ I'

For n E N, we denote by P" the set of the zeros of E", '" (u). Set
P,,:= {¢", I.:} with the normalization 11 - ¢", 1.:1:( 11 - ¢", I.: + ,I, k = 1, ....
From Theorem 4, we have

dist( P", 1) -> 0,

For any positive t, denote by 1,,(1;) the number of the zeros of ¢", I.: which
lie in the disk of radius t, centered at U = 1. In the present paper we prove

h40'~.~J-7
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THEOREM 5. Undcr thc conditions 01' Thcurcm 4, for for any £, we ha[1c

I· . f 111 (1:) 0
110m ~-> .
Jl-,I n

(1.5 )

For a number G, 0<£<1, we denote by .w,,(G) the annulus
(I -1:) lall/all+ II < 1.:::1 < ( I + 1:) lajall + II. From the last theorem, we have

COROLLARY 3. II' n = I and C l < 0, then for any G, 0 < £ < I the Pade
error function f - nil. '" has, ./in' n largc enough, cxtrancous ::cros which
arc situated in the annulus .w,,(G). Their numher k ll (,:) satisfies, as 11 -> ex,
condition ( 1.5).

Set

R:= lim inf lall/a ll + II.

(Notice that p(f) ~ R.)
Obviously, if R = 00, then f is an entire function. If in addition the con

ditions of Theorem 4 are fulfilled, then each Pade error function f - nil. '"
has, for 11 large enough, extraneous zeros and they go to infinity, as 11 -> 00,

with the speed of /all/all + II.
Further, if 11 = I and 0 < R < 00, (in this case p(f) > 0), then the set

{:: : 1::1 < R} - 0 does not contain, in view of Theorem 3, accumulation
points of the zeros of (f - nil. III) as n -> C/] (recal1 that each Pade error
function has a zero at :: = 0 of order m + n + I). If in addition the
parameter (' I in (1.3) is a negative number, then, in accordance with
Theorem 4, the circle {:: : 1.:::1 = R} contains accumulation points of zeros of
(fEJr Il. III )(Z) as n-> ex. If R=lim SUPII~X \all/all+11. then R=p(f) and all
the extraneous zeros of f - nil. III tend to the circle {z: Iz\ = R}.

Finally, if p(f) = 0, then Z = 0 is an accumulation point of extraneous
zeros of f - n II. III' as 11 -> ex.

Important functions to which Theorem 4 may be applied are the
exponential function (see [10])

f(.:::)=exp::= I. ::J/j!
J=()

and the Mittag-Lefler function of order )" A> 0, (see [4])

f(::) = I. zJ/F(\ + j/A),
j=O

A>O.

The Pade error function for c -= has been considered in [6].
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2. PRELIMINARIES

LEMMA I. For any nand fII, there holds
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( )

n1 111 --I
llll+m== a ll + 1 n

a" a" )~ I

The proof will be omitted.
Set

D(n, m)
Dn. III :=--III

an

The following lemma is of essential importance for all the considerations
in the present

LEMMA 2 (see [7]). Let f be a formal power series, with aj =I' 0 fi)r j
large. Assume that 'Ii has the a.\}'l1lptotic expansion (1.3) with CI =I' O. Then
for m = 1,2, .,. we have

m I

D =(-c In)I1I'I1I-1 1/2. n j'm-)
II,'" II.

j~1

and

·11 +:x( 1, m)/n +o( lin)} as n --x.

lim Qn.lII(ua,,/a,,+I)=Bm(u).
II __ f~

IF (1.2) holds .Ii)f" a numher '1 that is not a root of unity of ordcr m thcn

We scI

lim
11- f

m --I

D n (I - " J )m - J.fl,'" ==
i~ I

I

1",):= n 'In+ 1+ /,
I~()

The next lemma describes the asymptotic behaviour of 1", i as 11 -> 'lJ for
j "small", Before presenting it. we introduce for a given function g and a
fixed number p, pEN, the operator

Vl'g(x) := f (-1)' (P) g(x - i),
i~() I
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with

and
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VO I(x) :=I(x)

LEMMA 3 (see [5]). Assume that '7 j has the asymptotic expansion (L 3}
with '7 = I and c I i= O. Let N be an arbitrary positive integer. Then

(a) ./fJr e(/ch j, j + 1:(; nlN we have as n --> Cf]

N

1".,=1+ I (j+I)·Q,. dJ)l(n+I)'+MN+I(j,n),
s=1

where Q, is a polynomial oj" degree :(;.1';

(b) for each fixed p, p = 0, I,... andfor any j, j + I < (n - p)/(N + 2p)
the remainder M,v + I (j, n) belull'es (/ccording to

with suitahle positil'c constants CN + 1.1' which do not depend on nand j.

We notice that

(2.1 )

and

(2.2)

(In what follows, we shall denote by Ca , h, ... and C(, .. ) positive constants
that do not depend on n.)

3. PROOFS OF THE RESULTS

Proof of Theorem I. Applying Lemma I to the normalized error func
tion ~ (u), we easily get

:k

J¥,,(u) = I + L dll"ui,
j=1

where

j

dll,j:=n 'l:,+j+1 /.
'~1

(3.1 )
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First, we notice that under condition (1.2), for any fixed positive integer k
there holds

k

1+ L
.i~1

k

d",.i u.i ....... L ".iU + 11/2 z.i
i~ 0

as 11 -> ct:;, (3,2)

We first consider case (i),
Suppose that 1,,1 < 1. Condition (1.2) ensures the existence of a positive

number 6 with

1,,1 < I -0, (3.3)

Let E and R be arbitrarily fixed positive numbers. Obviously, there is an
integer k such that

R( 1- 6)lk+ I 1/2 ~ 1/2

and

(1/2)k < E/2,

We rewrite J.v,,(u) as foIlows:

k ~ I

J.v,,(u) = 1+ L dll,.iu.i + L d",.iu.i:= J.v", I.du) + J.v",2,du)
i= I i~k

From (3,3), we have for every 11 large enough (II> 11,,) the inequality

Id -I,e::, (I - J).i<i+ 11/2
n,) -.......;::, .

From the last inequality, we get for n > n,5

'I;

'IW ()II (R(I -')lk+II/2)k "' R'(I_-,)(/2+111+2kW2,I 11.2, k U 1111 <; R ~ - u ' L. u

'~O

Making now use of (3.4) and (3,5), for every 11 > 1I,j we obtain

(3.4 )

(3,5 )

II J.v,J,2, d u) 11 1111 <; R < E,

Together with (3,2), this inequality yields statement (i) of Theorem 1.
Assume now that the conditions of case (ii) hold; then for every 11 large

enough (n > 11.,) we have

Repeating now the previous considerations, we come to statement (ii),
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Proof ol Theorem 2. From the equality (see [2])

k + I :::" + k + I D( n + I ), k + I )
(n".k-n".k+I)(Z)=(-I) ~(QQ )(-)D( k)

11. k 11. k + I - 11,

we get

HI 1

(/-n l1.",)(:::)=(/-5,,)(:::)+ L (n".k-n".k+I)(:::)
k~O

m I

=(/-511 )(:::)+ L (-1/+ 1

k~()

D( 11 + 1, k + 1I
D(n, k)

so that

fI1 I ( _ 1)k + I Uk DI1 + I. k + I
el1 • fI1 (u) = W;,(ul + I --_.

k = () D" k . (QI1. k Q" k + I )( ua" 'a"..,. I)

The statement of Theorem 2 follows now from Lemma 2 and from
Theorem I.

Proal of Theorem 3. Set

fI1

Qn,m = L qk.fl, m::nI
k

k~()

(recall that lJ",. ". III = I). Completing technical transformations we rewrite
£". fI1 as

1+""c:' dF uJ
E (u)=_. k...J~1 11.}J~

II, m Qn. m( uan/an+ I ), .

In the last formula

D III fI1 k
F _(_I)fI1 __"· nl . '\' ~.
j.n,m- D i-J m--k qk.n.m

n+J.nt+1 k=O lln+]

k j

n Ink. 'l11+k+J+ I-i' 'l11+i+ I i'
i~ 1 i= 1

(4.1 )

(4.2)
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Indeed, from the definition of Pade approximants we have

(f.Q".m-P".m)(U(/n/UI1+I)_" I j~'

(
I )1J+IJ1+1 - L., (uan/lll/+ I ) ~ a,,+k+.i+IQk.ll.m·

U(/l1i(/l1+ I j~O k=()
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Applying now Lemma I, we easily come to (4.1 ).
From Sylvester's identity (see [2]), there results the recurrence formulas

where

Qk.I1.",=qk 1.11.",··1 -D(n,ln)Qk.11

QO.I1.II'= -D(n,m)Q().,,~I.'" \.

l,m ,.

D(n, m) := D(n -1, m - I) D(n + I, m)/D(n, 111- I) D(n, 111).

Making use of these formulas, we obtain

-D(n, m) D(n + 1,1/1)

Fj. /1. m := D( n + 1, 111 + I ) D( n, 111 - I )
(/11+1

(/"

l
I. n, 1 J • (4.3)

The next step in the proof is to establish by induction on 111 that

(a) for every N EN and for j + 111 < ni(N + 3m - I) the following
expansion is valid as 11 -4 CfJ

F n'" (}+I) ; .Y>,. II, (}) l' .)
/.II.m= --,-+ L. (n+ 1)"+' N+l.m(j·n,

I~I m. ,~l

(4.4)

where ;Y'... m(}) is a polynomial of degree not exceeding m + s;

(b) for every j, satisfying j + 111 < n/(N + 1+ m + 2(p + 111 - I)) there
holds, as 11 -4X,

I(n + I )... + JI + 1 • Vp .I.~. + I. m (j. n) I < e",. N + I, P . j N + '" + 1 ( 4.5 )

with C,1I. N + I. p a positive constant not depending on n and on j;

(c) for numbers j with j + m ~ n/3111 we have for n -4 ex

Check the hypothesis for 111 = I. The direct calculation gives

F _ 1".j-1
/.11. I - '711 + I - I

(4.6)

(4.7)
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In accordance with ( 1.3), we may write for 11 sufficiently large

with

Using Lemma 3, (2.1) and (4.7), we get for Fj.II.1

F ={( '+l){l+ ~ Qs(J) .}+(11+1).MN+ 2(J,Il)}
}. II. I } L. C (11 + 1)" C

s~ I I I

The last formula can be rewritten as

N

Fi,II. I = j + 1 + L :1>,. I (j)/(Il + I)' +. i.~,+ I.1(j, 11).
.\'=J

We easily verify that deg~JfJ.,.. dI)~s+ 1. Further, we see that .j/~'+I.dj,ll)

depends on (11 + I), M.~, + 2(j, 11). Let now pEN be fixed. Since for j + 1<
(11-p)/(N+I+2p) the remainder MN + 2(j,n) behaves in the way
described by Lemma 3, then A<~ + I. I (j, n) satisfies as n --> oc the induction
hypothesis (4,5) for numbers j with j+l<n/(N+2+2p) and CU"+I,!,

being a suitable positive constant.
Also, for j + I ? n/3, (4.7) implies (4.6) for m = 1 with a suitable positive

constant.
Thus the assertion is proved for m = I.
Set now

-D(n, m) D(n + I, m)
'2:~,.111:= D(n + I, m + I) D(n, m-I)

a,,+1

all

Before proving the induction hypothesis for an arbitrary number m, we
consider the asymptotic behaviour of fiJn. 111 as n - oc and In is fixed. From
Lemma 2, there follows for every N?: 1 the representation

n + 1 f N iX, }ff1" m=~-' 1+ L ,.111+ o(1/(n+ Irv ) ,
. mc i . i~1 (n+I)'

as n --> oc:.
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Suppose (4.4 H 4.6) are valid for some 111. Let N EN be fixed. Then in
view of (4.3) we may write

11 + I { !Ii (Xi.", + 1 iV }
F;'lIm+l= ,,1+ I+o(I/(n+l) )
., (m+I)c, ,~I (11+1)'

{{
N+I }

. , I +'~I (j + I)· Q, 1(j)/(11 + I)' + M,v + 2(j, n)

{

m +, j + I !Ii +, Y (j + I) }
. TI -,-, + I "( ", I )' + .v~ + 2. III (j + I, 11)

1=2 m. s~1 n+

i
lll

+
1 j+l N+I Y (j+I) }}- ,n --I+ I"~ III s + .v,~. + 2. III (j + I, 11 - I ) 0

1~2 m. s~1 11

Using (2.1) and (2.2), we rewrite this formula in the required form, namely,

_ ", + , (j + I) N () . S' •

F;.II.m+ 1- T1 ( I" + [ '~o",+ ,(J)/(11 + I) + ,j ."'+ I.m+ ,(J, 11),
I~I m+ )..,'=1

where obviously each polynomial ~m + 1 is of degree not exceeding
m + s + I. Further, we see that the remainder .V,~' + J.", + 1(j, n) depends
on the difference (n + I) . {.j~ + 2.",(j + I, 11) - .j,~, +2.", (j + I, 11 - I)} =
(11 + I) . V. (,~' + 2. m(j + I, 11). From the definition of vr we easily set

Vr { (n + I ) . VA.~ + 2. m (j + I, n)}

= (n + I) . vr +, .(·:v + 2.1II(j + I, n) - p. vr .j,~,+ 2.",(j + 1,11 - I).

Therefore, for j + I + fIl < IllI.r := min(n/( N + 2 + fIl + 2(p + m)), (n - 1)/
(N+2+m+2(p+m-I))) the term vr.V.~+I.II1+I(j,n) behaves in the
way described by (4.6). The observation that 11110" = 11/( N + 2 + m +
2(p + m)) for n large establishes (4.5) for m + I.

Further, for) + I + m ~ n/( 3m + 3) we easily check that

10.11.",+11 ~C"'+I)"'+I.

This proves the induction hypothesis (4.4)-( 4.6) for m + I.
We notice for) + m < n/3m the validity of the inequalities

", (j+l). .
F}. II III = TI --+ .11 ",(J, n).. m! .

I~I

with

In· .v;. ",(j, 11)1 < '4 1. ",(), n)1 < '4"" )"'+'

We now are in position to prove Theorem 2.

as n -> oc.

(4.8)

(4.9)



384

Set, for any kEN

and

From (4.1 ), we have

R.K. KOVACHEVA

k I

ell_",.k(U):= I d ll .J Ej.II.",UJ

i~O

y

611.",.k(U):= I dll .J Ej.II.",uJ.
i~k

ell.",. k(U) + 611 • "'. k(U)
EII."'(u)=----- --.

Qn, m(uall/all + 1),
(4.1 )'

Let J be a fixed positive number. For n E N sufficiently large we write

Applying (4.4)-(4.6), we establish that

11
-" II ~ C( -k,j + -m5)
(,}Il,IJI,k lul::;;c-ij~ . e e ,

where C is a constant independent of k and 11. On the other hand, for any
fixed j we have

", (j+/)
F -->n

/.11,111 1=1 In!

so that, for any fixed k we may write

k J ", (j + I)
ell.",. k(U) --> I: n --,-

J~() I~I m.

as 11 --> C/J,

as 11 --> ,ex:;.

Hence the statement of Theorem 3 follows easily. Indeed,

y~, . HI 1
I ul n (j+/)/m!=-,·(u"'(l-u) ')("'I=(I-u)-'" ,
j~() I~ 1 III.

This result, (4.1)', and Lemma 2 establish the statement of Theorem 3.

Proof of Theorem 4. In our further considerations, we shall deal with
the functions 611.",(u) := 6;,.",. o(u). Recall that m is fixed and 11--> oc. In
accordance with (3.1 ) we have

I

d ll • j := n 11~,+j+l--1
I~ I

as 11 --> ex.
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Arguing in the same way as in [5], we shall establish that for every J
small enough there exists a positive integer l1,j such that for any 11 > l1,j the
inequality

(5.1 )

is valid, where

and C( 0) is a positive constant, independent of 11 and 6.
For convenience, we shall use the notation CI := -2d,. In the conditions

of Theorem 4, d I > O. In [5], the validity of the following inequalities for
each 11 large (n > 11 0 ) was established:

(5.2)

and

(5.3 )

The two last iunequalities lead to

This inequality means that each function t;,.",(U) admits an analytic con
tinuation in the disk {u, lui < ('dli2}.

Let E: be a fixed positive number, [; < I.
In our further considerations, we will assume that for 11 > no the

ineq ualities

and

11m /7/11 ~ C( I)· Re /7,./n 2

(5.5)

(5.6)

are fulfilled for a suitable positive constant C( I ). Without loss of generality,
we may assume that C( 1)> I. In accordance with Theorem 2, (4.8), (4.9)
and (4.6), we may also write

for j + m < 11/3111 and

IF)./I.IIII ~ C( I) )j'"

(5.7)

(5.8)
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otherwise. Select a positive number 60 such that

(5.9)

and set

In what follows, we shall assume that each n > no satisfies the inequality

(5.10)

Let 6 be a positive number such that 6 < 60 , Obviously, there is an integer
n,j, n,j > no, such that for any n?o n,j the inequalities

(5.11 )

(5.12)

and

(n + I) .jlOg (I _ 2d, + 6)1 < 2
2d, +6 11 + I

are fulfilled. Set },(J):= 66/d(l1, 6). For}> },(6)· n we obtain, in accordance
with (5.4) and (5.5) that

which implies with respect to (5.9), (5.7) and to the choice of 6 the
inequality

(5.13 )

On the other hand, we have for}+ I ~}dJ)·n by (5.3), (5.6) and the
choice of 6

I
d}, 11 - I I< C( 2) . 6 2

nj~I(Re1j'Il+}+l-I)1 '" ,

where C(2) = 18C( 1)/d;, ,j' Notice that the choice of 6 ensures that
C(2)· J~ < 1/2.

Further, the last inequality with respect to dll.} leads to

J

(I-C(2)J 2) n (Re1J>1+}+l_I)'~Red".)
,~ ,

}

~(I+C(2)62) 11 (Re'1ll+i+I-/)'
I~I
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Next, we assume without loss of generality that the integer 11" satisfies the
additional condition

))(<5). 11,; +m - 1 < n,,/3m.

Using now (4.8), (5.7), and the last inequalities, we get

(5.14)

j

Re 0. n. '" . Re dn. j - 1m 0. n. /II' 1m dn.)?: Q",,(j). n (Re 'I" +i + 1- 1)1,
I~ ,

with

(
'" <5 )Q,,"(j):=(I-C(2)<5~). D, (j+/)/m!-C(I)jIll'd(e,~o)

66
- C(2) 66C( l)j'" .-_0_.

die, ( 0 )

As we see, Q"" is a polynomial of degree exactly //I and all its coefficients
are positive. Further, in view of (5.10) and to the choice of t>{) we may write

Re 0. n. '" . Re dn. j - 1m 0. n. III' 1m dn.} > O. (5.15 )

Recall that the last inequality is valid for n > 11" (compare with (5.14))
for any J with j+ 1 <Jd6) ·n. Set now J2(6) :=6/(2d i +6) and consider
. ,2,' ._,},(,>lI n + I I- 1 I ,2,'} F 12I:n.",.,,(£ ) '-'<::"'J~O (n.jFj.n.III(£)· rom (5. ) we get

26

J+ I <~I('" 2d, +6)1'log 1---
n+1

which immediately implies

(
2d) + 6.)/11 + I }i2

1---- >c -"I
11+1

Taking into account (5.11 ), we conclude from this inequality that

jn (Relln+/+)_I)I>C-"/.
I~ ,
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Recall that the last inequality holds for} <}2(J)(n + I) - I and for n
"large". Now, combining (4.13), (5.15), and the last result, we get

i..,((»)(n + 1) 1

Re ISn. 'II (('2,») >' L Q')(j(J )c,lj - C( 151)) e
j=O

Inequality (5.1) results from here.
Now, it easily follows that the point u = 1 attracts, as 11 ->x, at least one

zero of the sequence E".",(u). Before presenting the proof, we introduce the
notation Ua(r); that is the open disk of radius r, centered at the point a;
further, we set r"(r) := oVa(r).

Assume now the contrary that there is a disk VI (e ... 1'), I + c'· I' < etll /2

such that lin. 'II (u) # 0 there. Set r: = log( I + e 1'). Let 0 be an arbitrary
positive number with I + e 1'. ell < e tll i2 and 0 < I - C 1'. ell. Set r( OJ :=
log(l + e I' + II). Without loss of generality we may assume that the number
r( 0)/2 satisfies inequality (5.9). In the notations of the preceding considera
tions, we introduce for 11 "large" in the previous sense that series A nand Bn

as follows:

and

AIl(u) :=
i + I > it (tl () )" ....2) "

d ll • J0. II. til ui

i
l

( r( Of,,:'::?) ·11 I

BIl(u):= L: dn.J 0.n.",U'.
i~O

Repeating the same considerations as above (see (5.13)), we establish that

IIA II ~ C( (f))) . nr(IIIJ,(rlf/l/21
n U(jlc'IIIII"" r c

On the other hand, for Bn we easily get

(5.16 )

(5.17 )

Set now V: = Vo( 1) U Vd c 1') and let x" be the regular branch of
(Ii;,. ",)(U) lin determined by the condition x" (0) = I. Inequalities (5.16) and
(5.17) ensure the uniform boundedness of the sequence {X,J in V. By
Theorem 2 and by the theorem of uniqueness for holomorphic functions,

x,,-> 1

uniformly inside Vo( 1) and therefore, inside V, as well. On the other hand,
by (5.1) for any (j<r the inequality X,,(e'»)~expn«(j2/2(4dJ+(j)) is valid
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for each n large enough. This contradicts with the last result about the con
vergence of the sequence X,,(u). The contradiction we obtained establishes
the statement of Theorem 5.

Prool' 0( Theorem 5.
now by ¢1I.k' k = I, ... , III

III ~ I.
We shall show that

Preserving the notations of Theorem 4, denote
the zeros of 6". III (u) in VI (e "). By Theorem 3,

lim inf I,.in > O.

Suppose to the contrary that there is an infinite sequence A, A eN such
that

Set

and

lim
11-1' f ..• IiE.1

'"
qll(u):= n

k~l

111/11 = O.

( I-~)(n, k

(6.1 )

{
t1 ()} I ill, (U):== ')Il.1J1 u

XII ()'q/l U

with XII(O) = I.
Consider the sequence {XII} II E.I·

For qll(u) we have

Combine now the last equality, (5.16) and (5.17). By virtue of (6.1) and by
the maximum principle for holomorphic functions, the sequence {XII} II E.1 is
uniformly bounded on V. (recall that accordingly to the geometric con
struction and to the choice of 0, V c Vo( r( 0)).

Select now a positive number r with r<l-c-l'eo. For uEUo(r), we
obviously have

J(I-c I'+r)}'" J.(1-CI'~r)}'"
( (I-e/' ~lqll(u)I~I-~(-I~_-e-I'-)- .
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Therefore, in view of Theorem 4 and of (6.2), we may write

X,,-> I

on the disk [fc)(r). Therefore

X,,-> I

as n -> CfJ, Il E A,

as n -> CfJ, Il E A, (6.2)

uniformly inside the domain V.
Select a positive number [;0 such that

e- P

8 0 <4'

e --p

mes1(Q(I:O)) <1:0 <4'

Further, for U E UJl e 1') - Q( [;0) we have

(6.3)

The choice of Go and (6.3) ensures the existence of a posItive number 6,
6 < r such that C"E Udc 1') -Q(Go). Applying (5.1) to that number 6, using
the last estimate and (6.1 ), we conclude that X" (c';) > ('",;'/214<11+ ,5 I for /l large
enough. This inequality forms a contradiction with (6.2). Consequently,
( 1.5) is valid and Theorem 5 is true.

REFERENCES

I. R. ASKEY AND M. ISMAIL, Recurrence relations, continued fractions and orthogonal poly
nomials, Mem. Amer. Math. 50(' 49 (1984),300.

2. G. A. BAKER, "Essentials of Pade Approximants," Academic Press, New York, 1975.
3. G. A. BAKUR JR. AND P. GRAVES-MoRRIS, Pade approximants. I. Basic theory. ill

"Encyclopedia of Mathematics and Its Applications," Cambridge Uniy. Press. Cambridge,
UK, 1981.

4. A. EDREl, E. B. SAFF, AND R. S. VARGA, "Zeros of Sections of Power Series," Lecture
Notes of Mathematics, Vol. 1002, Springer-Verlag, Berlin, 1983.

5. R. K. KOYACHEVA AND E. B. SAFF, Zeros of Pade approximants for entire functions with
smooth Maclaurin coefficients, J. Appro.\:. Theory 79 ( 1994), 347-384.

6. J. LAM AND K. W. CHUNG, Error bounds for Pade approximants of e .: on the real axis,
1. Appro,\'. Theory 69 (1992),222230.



ZEROS OF PADE ERROR FUNCTIONS 391

7. D. S. LLJBlNSKY, Uniform convergence of rows of Pade table for functions with smooth
Maclaurin coefficients, COllstr. Appro". 3 ( 1987), 307 330.

8. D. S. LLJIlINSKY AND E. B. SAFF, Convergence of Pade approximants of partial theta func
tion and Rogers-Szego polynomials, CO/lSfr. Appro". 3 (1987), 331 361.

9. O. PERRON, "Die Lehre von den Kettenbriichen," 3rd ed., Chelsea, New York, 1957.
10. E. B. SAFF AND R. S. VARGA, On zeros and poles of Pade approximants to "c. Nlimer.

Math. 25 (1975),1 14.

h40K.1 'l·K


