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We deal with functions f{z):=37_, a,z" whose coefficients satisty Lubinsky’'s
smoothness condition, namely, a,,,-a,_ ,/af —n as j— %0, n# oo. In the present
paper, theorems concerning the asymptotic behaviour of the normalized (in an
appropriate way) Padé error functions (f —n,, ,,} as n — «w, m-fixed, are provided.
As a consequence, results concerning the number of the zeros and of their limiting
distribution are deduced. 1995 Academic Press. Inc.

1. INTRODUCTION AND MAIN RESULTS

Let
f2):=Y a5z (1.1)
i=0

be a function with 4, # 0 for all nonnegative integers j, (j€ N) large. We set
’7v/3=aj+1"{,71/afa J=JosJis e
The basic assumption throughout the present work is that
n;,—1, as j— oo, (1.2)

This kind of convergence has been introduced and studied by D. Lubinsky
in [ 7], where important theorems resulting from {1.2) with respect to the
asymptotic of Toeplitz determinants and uniform convergence of the mith
row of the table of classical Padé approximants to f are proved. Therefore,
in what follows, condition (1.2) will be called “Lubinsky’s smoothness
condition”.
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Let p(f) be the radius of convergence of the power series (1.1). We
notice that under Lubinsky’s smoothness condition (1.1) represents an
entire function, if || < 1; the radius of convergence p( /) 1s zero, if || > 1.
If |7} =1, then (1.1) may have a positive or a zero radius of convergence.

Further, we assume that the numbers 5, tend to # smoothly enough,
namely: there exist complex numbers {¢;} 7, with ¢, # 0 such that for each

N, NeN, N> 1, we have the representation

"
)]”:I]v{l +ep/m+ Y, e n'+oln “V)}. (1.3)

i=2

Introduce the function H,{z) with

Fa

Hz):=3) ptirhiRz

J=0

It is clear that for (4| <1, H,(z) 1s an entire function. If |5 =1, then H, (Z)
is holomorphic in the unit disk; in the case when 5] > 1, the radius of
convergence is Zero.

Notice that H, (z)=h{nz), where h(z) is the partial theta function. lts
properties (natural boundary, domains omitting zeros etc.) have been
studied 1n [8].

Let now m be a nonnegative integer. In our further considerations, we
will assume that m is fixed.

Further, we assume that the power series (1.1} does not represent a
rational function with a number of finite poles, not more than m (we write
JEA,).

For each n, neN, let n,, ,, (==, ,,(f)) be the Padé approximant to the
function f of order (n, m). We set

nn. m = Pn, m/Qn, ”o

where @, ,,(0)=1 and both polynomials P, ,, and Q, ,, do not have a
common divisor.

Let D(n, m)=det{a, /H,\.}j"k:l be Toeplitz’s determinant formed from
the Maclaurin coefficients of (1.1). Under our basic assumption concerning
nonrationality of f, it is true that the inequality D(n, m)# 0 holds for an
infinite sequence of positive integers n (see, for instance, [2] and [3]).
Denote by A the sequence of those positive integers for which deg Q,, ,, =m;
as it is known (see [2], [3]) 4 is infinite (recall that that /¢ #,,). For any
neN the equality =, ,,= 7., », Where k(n):=max{k, k<n, keA} is
valid. For ne A there holds (see [9])

(f'Qn‘m_I)n.m)(z):Z"+”,+l (—1)mD(n+ la m-+ 1)/D(’7. I'il)+ ceey
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and
Qn‘ m(:) =1 + -+ o ( —1 )m D(n + 11 nT)/D(n, ’H).

Recalling now the structure of Padé’s table corresponding to f, we
assume without losing the generality that the last formulas hold for every
ne N starting with number #,,.

In what follows, we shall call the difference f— =
tion to f of order (n, m).

Recently, the limiting distribution of the zeros of the mith row in Padé’s
table for entire functions with “smooth” Maclaurin coefficients was con-
sidered (see [S]). As a consequence, the limiting distribution of the zeros
of the sequence of Padé approximants =, ,, as n— oc was characterized.
The goal of the present paper is to explore analogous problems with
respect to the Padé error functions.

Denote by S,(z) = S,( . z) the nth partial sum of the function f():

n

the Padé error func-

n.m

We notice that S,(z) ==, o(2) for every NeN.

The starting point for the investigations is the following unpublished
result by E. B. Saff with describes the limiting behaviour of the differences
/— S, as n— oo normalized in an appropriate way.

THEOREM 1. Set

l"/n(u) = (f_ S/l)(uan/‘anwL 1 )/an+ l(uan/all+ 1)"+ l'

Assume that (1.2) holds with (i): |n] <1 and (i1): with g} =1 in a way that
gl < U for all n large enough. Then, respectively,

(1)
W(u)— H,(u) (1.41)
uniformly inside in C and
(i1)
W, (u) — H,(u) (1.4i1)
uniformly inside {u:|u) <1}.

As usual, “uniformly inside” a given set M, MeC, means uniform
convergence on compact subsets of M in the uniform norm.



374 R. K. KOVACHEVA

Let now m be a fixed positive integer. The first result in the present paper
refers to functions (1.1) for those # 5 1. Following [ 8], we introduce the
polynomials B,,(u) .= B, (4, ¢), me N fixed, as follows:

B(u):=1and form=1,2, ..

B, (u):=B, (u)—u-q"""- B, _,(u/q).
When ¢ is not a root of unity, then

m 7 Jj o m+ =k
B (—u)= Z g_ﬂ/ﬂ(l 9 k.__);
=0 n'//(:l (1—11 )
furthermore, B,,(#)={1 —u)", when ¢ =1.

These polynomials are of importance in the investigation of the distribu-
tion of the zeros of Padé error functions f —=, ,, in the case when the
number # in (1.2) is not a root of unity.

For 0 < ¢ < 1, the polynomials B, (suitably normalized) are orthogonal
with respect to a nonnegative weight on the unit circle (see [1]), so that
all their zeros lie in {z, |z| <1}. For ¢ =1 results concerning the distribu-
tion of the zeros of the polynomials B,,(«), m =0, 1, ... can be found in [8].

For our goal, we introduce an appropriate normalization of the error
functions. Set

(/— Ty, m)(uan//an+ l)
a, 4 l(uan/au +1 )"+ v

)
6n. mo T

The following theorem describes the limiting behaviour of the sequence
e, for m fixed and n - oc.

THEOREM 2. Assume that (1.2) holds for a number n with n # oo in the
way that (1) n is not a root of unity and (it) n is a root of unity of order m,
and satisfies (1.3). Then (1) for any m and (1) for any m, m<my— 1 there
holds

-1 k — (= DF T
[1, =)D u
n.om K ‘
€y () > H, (4) kZ:o B(u) B, 1 (u)

as n— o

uniformly inside the domains described by Theorem 1), excluding A4, where 4
is the set of the zeros of the polvnomials B, = B, (z,n), k=1, ... m.

Set 8(m, n) :=min{|z|: B, (z,n)=0,k =1, .., m}. From Theorem 2, we get
CoRrROLLARY 1. With the assumptions of Theorem 2, for any ¢, 0 <e <1,

the Padé error function f—m, ,, has for n sufficiently large not more than u
finite number of zeros in 0 < |z| <8(m, y)¥(1—¢)-la,ja, . |
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The next results characterize the limiting behaviour of the error functions
as n— oz, m-fixed, in the case when the numbers 7, tend to n=1 in the
way described by (1.3).

Denote by E, ,(«) the error function f—x, ,, normalized as follows:

(f‘;nn. m)(uan//an+1)
(ua, ja, , )" " (= D)™ Din+1,m+ 1)/D(n, m)

ni

E‘n."l(u) ::

In the present paper, we prove

THEOREM 3. Let meN be fived and f¢ AR, Assume that a,#0 for j
large ; assume, further that n, admits the expansion (1.3) withn=1, ¢, # 0
and \n,1 <1 for all ne N sufficiently large.

Then

2n -1

(u) = (1 —uj as n— oo

E

n, ni
uniformly inside {u: ju| <1}.

From Theorem 3, we have

COROLLARY 2. With the assumptions of Theorem 3, for cach fixed meN
and any ¢, 0 <e <1, the Padé error function {f—mn, ,,)c) has no zeros in
0<|z| <la,/a, .| -(1—¢&) for n sufficiently large.

Recall that under our assumptions each Padé error function of order
(n, m) has a zero at z==0 of order m+n+ 1.

Further, we consider the special case when # =1 and the first coefficient
¢, In (1.3} is a real negative number. Under this additional condition, the
next result provides information about the existence of “extraneous” zeros
of the normalized Padé error functions E, () and about the limiting
behaviour of those zeros as n — o0, as well.

THEOREM 4. If =1 and ¢, <0, then u=1 is a limit point of zeros of
{E;LHY‘“)} n’:l'

For ne N, we denote by P, the set of the zeros of E,, (u). Set
P,:=1{£,,} with the normalization |1 =&, /<]1—=¢&, (). k=1 ...
From Theorem 4, we have

dist(P,, 1} =0, as n— o0,

For any positive ¢, denote by 1,{¢) the number of the zeros of &, , which
lie in the disk of radius ¢, centered at u=1. In the present paper we prove

6408337
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THEOREM 5.  Under the conditions of Theorem 4, for for any ¢, we have

liminffl"—‘i)>0. (L.5)

n— 144

For a number & O<e<l, we denote by .o/,(¢) the annulus
(1 =e)la,/a, | <z} <(l+¢&)la,/a,, |. From the last theorem, we have

COROLLARY 3. If n=1 and ¢, <0, then for any ¢, 0<e¢<1 the Padé
error function f—m, ., has, for n large enough, extrancous ceros which
are situated in the annulus <7, (¢). Their number k(&) satisfies, as n — oo,
condition (1.5).

Set

R:=lminf |a,/a,. |

"= X

(Notice that p(f)>= R.)

Obviously, if R= oo, then f is an entire function. If in addition the con-
ditions of Theorem 4 are fulfilled, then each Padé error function f—=, ,,
has, for » large enough, extraneous zeros and they go to infinity, as n — 20,
with the speed of |a,/a, . |-

Further, if =1 and 0 < R< o, (in this case p(f)>0), then the set

{z:]z] <R} —0 does not contain, in view of Theorem 3, accumulation
points of the zeros of (f—=, ,,) a8 n— oc (recall that each Padé error
function has a zero at z=0 of order m+#n+1). If in addition the
parameter ¢, in (1.3) is a negative number, then, in accordance with
Theorem 4, the circle {z: |z] = R} contains accumulation points of zeros of
(fen, Hzyasn— oo If R=limsup, ., |d,/a,. |, then R=p(f) and all
the extraneous zeros of f—nx, ,, tend to the circle {z: |z| = R}.

Finally, if p(f) =0, then =0 1s an accumulation point of extraneous
zeros of f—m, ,,. as H— o0,

Important functions to which Theorem 4 may be applied are the
exponential function (see [ 10])

=3

JGy=expz=Y /)t

Jj=0
and the Mittag-Lefler function of order 2, 41 >0, (see [4])
fzy=3Y I +j/i),  A>0.

j=0

The Padé error function for ¢ ~° has been considered in [6].
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2. PRELIMINARIES

LemMa L. For any n and m, there holds

mom -1
yvm _ Uiy 1"[ ”‘,
(l” (l,, n+m 4

i=1
The proof will be omitted.
Set
D(n, n
Dn, me= -_(Emi)
a

”

The following lemma is of essential importance for all the considerations
in the present

LemMma 2 (see [7]). Let f be a formal power series, with a;# O for j

large. Assume that nj has the asymptotic expansion (1.3) with ¢, #0. Then
for m=1,2, .. we have

-1
DIL m= ( —Cy /n )’”(m - hiz, H jm -
Ji=1
A+l m)n+o(l/n)} as  n— o
and

hm Q11Jn(uan/an+]):B (u)

"

If (1.2) holds for a number n that is not a root of unity of order m then

m—1
lim Dn.m: H (] “’71‘)’"71'

H— I n
J=1

We set

/
In./‘:: n Mot 41
=0

The next lemma describes the asymptotic behaviour of [, ; as n — o for

1.
7 “small”. Before presenting it, we introduce for a given function g and a
fixed number p, pe N, the operator

i
Viglx)i= 3 (1) <117> glx—1),
)

i=A{
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with
VO fx) = flx)
and
Viix):=V'f(x)
LeMma 3 (see [S]). Assume that n; has the asymptotic expansion (1, 3)
with =1 and ¢, #0. Let N be an arbitrary positive integer. Then

{a) for each j, j+ 1 <n/N we have as n — oo
N
L,=1+Y (+1)-Q, (JVn+ 1)+ My, (jn),

where Q. is a polvnomial of degree <s;

(b) for euach fixed p, p=0, 1,... and for any j, j+ | <(n—p){N+2p)
the remainder M, \( j, n) behaves uccording to

(n+ DY VEPVIEM G <y G DY
with suitable positive constants Cy |, which do not depend on n and j.
We notice that
Quljl=1¢, (2.1)
and
O\ ()= (jei — jey +2¢5)/2. (2.2)

(In what follows, we shall denote by C, , . and C(...) positive constants
that do not depend on ».)

3. PROOFS OF THE RESULTS

Proof of Theorem 1. Applying Lemma | to the normalized error func-
tion W, (u), we easily get

Wy =1+ Y d,

j=1

where

'7f1+j+1-/- (3.1)

1

d, ;=

J
1=
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First, we notice that under condition (1.2), for any fixed positive integer &
there holds

1+ Z d, u — Z Hijines  as n— oo, (3.2)

J=1 F=0

We first consider case (i).
Suppose that {5| < 1. Condition (1.2} ensures the existence of a positive
number ¢ with

gl <1—2d. (33)

Let ¢ and R be arbitrarily fixed positive numbers. Obviously, there is an
integer k such that

R(1 —5)¥*+12 12 (3.4)
and
(172)F <&/2. (3.5)

We rewrite W, (u) as follows:

A =1

_l+z d,,,u-FZd u' =W, )+ W, 5 ()

nj

From (3.3}, we have for every n large enough (n>n,) the inequality

ld

Hjl

{1— o‘)j(j+ 12

From the last inequality, we get for #n > n,
w Wz.l,k(u)HMgRg(R(l (A+H7 Z Rl(l l(1+2/‘»))‘~‘2‘

Making now use of (3.4) and (3.5), for every n>n; we obtain
W,k cr <&

Together with (3.2), this inequality yields statement (i) of Theorem 1.
Assume now that the conditions of case (i1} hold; then for every n large
enough (n>n,) we have

|dn,j| < 1

Repeating now the previous considerations, we come to statement (ii).
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Proof of Theorem 2. From the equality (see {2])

_””‘*‘D(n-}—l) k+1)
Qn/\Qn L+l (n, k)

I)/\+|

(n,,_kﬂn,,_k+|)(:)=(

we get
”n 1
(f =7 2=/~ SNz} + Z e E)
=0
=(f—-8Nz)+ Z 1kl
k=0
D(n+1,k+l) :n+k+|
Din. k) Qn.k(:) Q"./\'+l(:)’
so that
m (_1)k+lukD"+l ‘o

€y, m( + Z

- .
k=0 n 'S Qn k Qn k + 1 M(l”ﬂ’(l,, +1 )

The statement of Theorem 2 follows now from Lemma2 and from
Theorem 1.

Proof of Theorem 3. Set

ni

Qn.m: Z ql. ", m"'” g

k=0

(recall that ¢, , ,,=1). Completing technical transformations we rewrite

E, ., as
l + = n L, ﬂlu/
B, = 2z ) (4.1)
Qn m(uan/an + l
In the last formula
D,, - nt a:’," k
F; n, m:( — ])m ‘D—’L v Z TZ‘Ik n,om

n+l.m+1 k=0 n+1

k

. 1_[ ’7"+k+]+l—/ 1—[ ;7M+/+1 IS (42)
/=1

= /=1
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Indeed, from the definition of Padé approximants we have

"

(f Qn. m 1)". ,,,)(ua,, ,"“a" +1 ) _ < / i
) (ua ‘Al ),,_,,,,,;l - Z (ua,,;a,,H)' Z an+k+j+l(1k_n.m-
ity 41 i=0 k=0

Applying now Lemma 1, we easily come to (4.1).
From Sylvester’s identity (see [2]), there results the recurrence formulas

Gimm=Gx 1pm-1~DR Gy 1 s
Go.n.m= —D(n, B)Go p—1.m - 10
where
Din,my:=Dn—1,m—-1) D(n+ 1, m)/D(nn, m—1) D(n, m).
Making use of these formulas, we obtain

£ . —D(n, m)y Din+ 1, m) d,
e D+ lm+ 1) Din,m—1)  a,

'{E-i»]J:,m— I']u.j_ﬁwtlkllf 1.m l}' (43)

The next step in the proof is to establish by induction on m that

(a) for every NeN and for j+m<n/(N+3m~1)} the following
expansion is valid as n— «o

I BN )

E = et ). 44
jonnm I];Il ’"! +»\§l (n+ 1)\+ N-f!.m(j ”) ( )

where # () is a polynomial of degree not exceeding m + s;

(b) for every j, satisfying j+m<n/(N+1+m+2(p+m—1)) there
holds. as n — =,

I(n+ 1)N+1,+l N Vp'-‘;;\«"# l.m(j~ ”), < CIV' N+ l‘p 'jN+m+] (45)

with C,, . , a positive constant not depending on n and on j;
(c) for numbers j with j+m = n/3m we have for n — o

'E. . ”l] SCV"'.}.’”' (4'6)

Check the hypothesis for ni=1. The direct calculation gives

(4.7)
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In accordance with (1.3), we may write for n sufficiently large
]V . .
Vin,.,— D= {1 + Z g /(n+ 1)’+0(l/n‘“‘)}-(n+ 1Y/e,
S
with
g = —c/cy.

Using Lemma 3, (2.1) and (4.7), we get for F; , ,

- S L (n+1)- My, 2(ji
E.::.l:{(]+1){l+z :.ITQ;IJ;—)\}+L”—’:LM}

s=1

. N4l g
~{1+ Y ! .+0(l/nN)}.

= (n+1)

The last formula can be rewritten as

Y
E.i=ji+ I+ Z P+ 1)+ Ay ).

s=1

We easily verify that deg 2, (j) <s+ 1. Further, we see that ¥, _, ,(/, n)
depends on (n+1)- My, ,(j, n). Let now peN be fixed. Since for j+ 1<
{n—p)/(N+1+2p) the remainder M, ,,(j, n)} behaves in the way
described by Lemma 3, then .+, ,(J. n) satisfies as » — oc the induction
hypothesis (4.5) for numbers j with j+1<n/(N+2+42p) and C| »,,,
being a suitable positive constant.

Also, for j+ 1= n/3, (4.7) implies (4.6) for m =1 with a suitable positive
constant.

Thus the assertion is proved for m = 1.

Set now

Y —D(n,m)D(n+1,m) a,,,
/n.m--D(n_}_Lm.;.])D(n,m—l) d, .

Before proving the induction hypothesis for an arbitrary number m, we
consider the asymptotic behaviour of &, ,, as n — o and m is fixed. From
Lemma 2, there follows for every N> 1 the representation

. n+1 N oy
D=1 Zim_ o fn+ )M L
Do me, { +,§‘l n+ l)’+0( /(n+1) )} as n— oo
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Suppose (4.4)-(4.6) are valid for some m. Let Ne N be fixed. Then in
view of (4.3) we may write

A

n+1 x, .
E = {] Shmrl 1 1y }
Jonom+1 ('"+l)('l { +,§l (n+l)1+0( /(”+ ) )

N+1
{{H PANVEIVE l(j)/(n+l)x+MN+3(j,H)}

s=1

‘{m+| j+[ S f;m(‘/—‘f_ l)

I1 3

e, mlo = (n+ 1)

‘{""+]j+l N+l¥fm(]+1)

+""‘;\«'+2. m(j+ lw ’?)}

+ )

s=1

+ AN mF+ 1, n—l)}}

nt
Using (2.1) and (2.2), we rewrite this formula in the required form, namely,

no+ 1 : N
_ (j+1 ) ,
FI".n_m+l - ,l:[] ('71+1)!+x§] "jf\',m+l(])/(n+ 1) N+l m+l(.} n)

where obviously each polynomial % , ., is of degree not exceeding
m+ s+ 1. Further, we see that the remainder . "wa w410, n) depends
on the difference (n+1)-{ Ay o (j+ L m)Y—ANon i+, n—=1)) =
(n+1)-V¥y,,,.(j+ 1, 1) From the definition of V” we easily set

VP{(”+1)'VL“;\'+2‘W(].+ L n)}
1)V A L = VP G L= 1),

Therefore, for j+1+m<p, ,.=mn(n{N+2+m+2(p+mj), (n—1)/
(N+2+m+2(p+m—1)}) the term V7.4, ,...(j, n) behaves in the
way described by (4.6). The observation that u, ,=n/(N+2+m+
2(p +m)) for n large establishes (4.5) for m + 1.

Further, for j+ 1 +m 2= n/(3m + 3) we easily check that

m+l
|E}.n.m+]‘ <cm+]j

This proves the induction hypothesis (4.4)-(4.6) for m+ 1.
We notice for j+ m < n/3m the validity of the inequalities

n +I
nn.zﬂ U et Al 1) (4.8)

with
'n'“"lyly.m(js n)] <%Lm(js n)}<%;11’jl"+l as n— oC. (49)

We now are in position to prove Theorem 2.
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Set, for any ke N

k-1

‘)n, m.k (u) = Z a’u.j F/ n,m ll‘/

=0
and

M\

u m, k(u

11 , aomU

From (4.1), we have

5_/}111L k ( u) + étn, m, k ( U)

4.1y
Qn. m(uan /(1" +1 )s

E‘IL Ill(u) =

Let J be a fixed positive number. For 1 e N sufficiently large we write

J<nidm-om ot
¢ 3y . - )
dn‘ m., k (() °) = { Z + Z } dnJ E nom€ .

i=k J=nfldm -m
Applying (4.4)-(4.6), we establish that
H(S(u ni k “ Ju) Bty S C(F ko + € 7"‘5)’

where C is a constant independent of £ and n. On the other hand, for any
fixed j we have

m (_]+1)
E nom H "l! )

=1

as " — oo,

so that, for any fixed kK we may write

”

¢y, ml\(u)'ﬁ> Z n

Jj=0 1=1

as  n— oc.
m’

Hence the statement of Theorem 3 follows easily. Indeed,

"y

. 1
Z H j+//m’—m' (" (1 —u) ) = (1 —g) "

This result, (4.1)’, and Lemma 2 establish the statement of Theorem 3.

Proof of Theorem 4. In our further considerations, we shall deal with
the functions &, ,,.(#):=46, . o(u). Recall that m is fixed and n— oc. In
accordance with (3.1) we have

n/ H 'In+}+l~l as  n— oo,
/=1
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Arguing in the same way as in [5], we shall establish that for every
small enough there exists a positive integer #; such that for any n > n; the
inequality

Re &, . (e¥) = C(0) - ¢" =) (5.1)
1s valid, where
a(d) =67/ —c\ + )

and C(0) is a positive constant, independent of »# and J.

For convenience, we shall use the notation ¢, := —2d,. In the conditions
of Theorem 4, d, > 0. In [5], the validity of the following inequalities for
each n large (n > n,) was established:

7, <t —d/n (5.2)
and

i']nlg"’n+lt' (53)
The two last iunequalities lead to

ld, 1 < U 1YL —d fn 4+ )Y D2 (5.4)
This inequality means that each function &, ,, (1) admits an analytic con-
tinuation in the disk {u, |u| <e“”}.
Let & be a fixed positive number, ¢ < |.

In our further considerations, we will assume that for n>n, the
inequalities

(nfd))) log(l —d,/m)| =z1—¢ (5.5)
and
[Im#,| < C(1)-Rey,/n’ (5.6)

are fulfilled for a suitable positive constant C(1). Without loss of generality,
we may assume that C(1)> [. In accordance with Theorem 2, (4.8), (4.9)
and (4.6), we may also write

| ¥y M < C(LY) - ™ n (5.7)
for j+m <n/3m and

[F5 ol < CL1)) (5.8)

J
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otherwise. Select a positive number J, such that
0<6C(1ym!d,/(d,(1 —&)—6d) < 1/3, (5.9)
and set
de, 0p) :=d {1 — &) — 60,
In what follows, we shall assume that each n > n, satisfies the inequality
Reyn, =21 —(2d,+0,)/n>0. (5.10)

Let 0 be a positive number such that 6 <J,. Obviously, there is an integer
ns, 15> 1y, such that for any n = n; the inequalities

Ren,>1 —(2d, +3)n (5.11)
and
(n+1) < Zt{1+5>
. — 2 A2
2, +o 'log == )< (5.12)

are fulfilled. Set j(d) :=6d/d(¢, ). For j> () - n we obtain, in accordance
with (5.4) and (5.5) that

‘dn.jl S(’ - 3,/'5’
which 1mplies with respect to (5.9), (5.7) and to the choice of & the
inequality

S ey

”J'=,/'](ri)n

On the other hand, we have for j+ 1< () -n by (5.3), (5.6) and the
choice of

SC(O‘O)e—r)'jllo'ln' (513)

’ Jue| = e

d;, ) .
» n —-11<2)-0°,
lnle (Re”n+j+1—])l

where C(2)=18C(1)/d];, Notice that the choice of J ensures that
C(2)-32< 172
Further, the last inequality with respect to d,, , leads to

J
(1-C(2)6%) [] (Ren, ;.1 1) <Red,;
/=1

n.j

J
<(1 +C(2)62) n (Re '7n+j+lfl),

=1
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and
j
(Imd, < C(2)6° n (Ren,, By
=1
Next, we assume without loss of generality that the integer n; satisfies the
additional condition
o) -ns+m—1<n;/3m. (5.14)

Using now {4.8), (5.7), and the last inequalities, we get
J
RC E FNT Re dn,j - Im F/' noot Im dn.j > Qo},(j) ’ H (RC ']u+j+ 1 - ,’)Iv
=1
with

2 [ TT () O
Q""(j)":“_C(z)()G)(H G+D/mt—C(h)jm- ~_9_4>
/=1

63,

—C(2)53C(1)j"'-d(8 5T
s Vo

As we see, Q,, is a polynomial of degree exactly m and all its coefficients
are positive. Further, in view of (5.10) and to the choice of §, we may write

Re £, ,.-Red, ,—ImF ,, -Imd, >0. (5.15)

n.Jj n.Jj

Recall that the last inequality 1s valid for n > n; (compare with (5.14))
for any j with j+1 <,j,()d)~n. Set now j,(J):=9/(2d, +J) and consider
Eum @@V =0T, F, L, (€2), From (5.12) we get

njty
20

o (1 zdl+o‘>’
& n+1

R

which immediately implies

SN\ S5+ 132
(1 3oy,
n

Taking into account (5.11), we conclude from this inequality that

J

Iy ,—df
I—[ (Re ’7n+j+1—l) >e
I=1
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Recall that the last inequality holds for j<j(d}n+1)—1 and for n
“large”. Now, combining (4.13), (5.15), and the last result, we get

Jtonn+1) 1
4 20 i 1 00 ; 60 Pnidis. 8
Re &, () > Z Q,,0j)e” — C(d,)e SV nid e 8)

/=0

Inequality (5.1) results from here.

Now, it easily follows that the point u =1 attracts, as n — o, at least one
zero of the sequence £, , (u). Before presenting the proof, we introduce the
notation U,(r); that is the open disk of radius r, centered at the point q;
further, we set I, (r):=3U,(r).

Assume now the contrary that there is a disk Uj(¢ "), L +e ” <e“?
such that &, ,,(u} #0 there. Set r:=log(l +¢ 7). Let & be an arbitrary
positive number with 1 +¢ 7-¢’<e¢”? and O0<1l—e¢ 7-¢” Set 7(0):=
log(1 +¢ ”*%). Without loss of generality we may assume that the number
©()/2 satisties inequality (5.9). In the notations of the preceding considera-
tions, we introduce for 7 “large” in the previous sense that series 4, and B,
as follows:

Pa

y S /
An“’l) T Z dn.jl‘}—;'. 1, mu
/'+l>j111(/))“2)<u
and
A0y -1
P J
B,,(Ll) s 2 dn.jli. ", Illu .
i=0

Repeating the same considerations as above (see {5.13)), we establish that
1AL Gocerony € ClalO)) e~ @ntnz, {5.16)

On the other hand, for B, we easily get
B, gy, < Cla(@)) e DA, (5.17)

Set now V:=U,(l) ) Uje ") and let X, be the regular branch of
(&, ,)(u)"" determined by the condition X, (0)= 1. Inequalities (5.16) and
(5.17) ensure the uniform boundedness of the sequence {X,} in V. By
Theorem 2 and by the theorem of uniqueness for holomorphic functions,

X, =1

uniformly inside Uy(1) and therefore, inside V, as well. On the other hand,
by (5.1) for any J <t the inequality X, (¢°)=exp n(d%/2(4d, + J)) is valid
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for each » large enough. This contradicts with the last result about the con-
vergence of the sequence X, (u). The contradiction we obtained establishes
the statement of Theorem 5.

Proof of Theorem 5. Preserving the notations of Theorem 4, denote
now by &, ., k=1,..,1, the zeros of &, ,,(u) in Uj(¢ ). By Theorem 3,
1,21

n=

We shall show that

lim inf ¢, /n > 0.

n— x

Suppose to the contrary that there is an infinite sequence A, 4 < N such
that

lim 1,m=0. (6.1)

n— c.ne.d

Set

g.(u) = ﬁ (1 *’u >

k=1
and

! gﬂ. " ( u) l“"”
Inktt) = {~——* -
g(u)
with »,(0)=1.
Consider the sequence {y,},. ,-
For ¢,(u) we have

e pr( (,{)_ l )}l,,
(I+e 7y )

min !q..(unz{

we Lyle”™)

Combine now the last equality, (5.16) and (5.17). By virtue of (6.1) and by
the maximum principle for holomorphic functions, the sequence {y,},. ; is
uniformly bounded on V. (recall that accordingly to the geometric con-
struction and to the choice of 0, V< Uy(r(0)).

Select now a positive number r with r<1—¢ 7¢% For ue U,(r), we
obviously have

(L—e "+r)" {(_1_0 Tk
Tt Ry e
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Therefore, in view of Theorem 4 and of (6.2), we may write
an— 1 as n— o0, neAd,
on the disk U,(r). Therefore
an—1 as n— oo, heA, (6.2)

uniformly inside the domain V.
Select a positive number &, such that

()7/)
80 < .
4

Set Q(C()) = Une;i U;\”l:l {U, ]u‘én,kl <{"0/JIM 'nz}‘ ObViOUS]y’

)P
mes, (§£2(&g)) <8[,<(T. {6.3)

Further, for ue Uj(e ?)— Q(&,) we have

(e 1,,>| ( )|
{(1 )} Z g, \u).

—e 7

The choice of ¢, and (6.3) ensures the existence of a positive number J,
J <t such that ¢“e U, (¢ *)— Q(&,). Applying (5.1) to that number J, using
the last estimate and (6.1), we conclude that y, (%) > "% +9 for n large
enough. This inequality forms a contradiction with (6.2). Consequently,
(1.5) s valid and Theorem 5 is true.
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